- -

Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting

Mostrar el registro completo del ítem

Boiti, C.; Jornet Casanova, D.; Oliaro, A.; Schindl, G. (2020). Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting. Banach Journal of Mathematical Analysis. 15(1):1-39. https://doi.org/10.1007/s43037-020-00090-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179424

Ficheros en el ítem

Metadatos del ítem

Título: Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting
Autor: Boiti, Chiara Jornet Casanova, David Oliaro, Alessandro Schindl, Gerhard
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient ...[+]
Palabras clave: Weight matrices , Ultradifferentiable functions , Sequence spaces , Nuclear spaces
Derechos de uso: Reserva de todos los derechos
Fuente:
Banach Journal of Mathematical Analysis. (issn: 1735-8787 )
DOI: 10.1007/s43037-020-00090-x
Editorial:
Duke University Press
Versión del editor: https://doi.org/10.1007/s43037-020-00090-x
Código del Proyecto:
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Agradecimientos:
Open access funding provided by Universita degli Studi di Ferrara within the CRUI-CARE Agreement
Tipo: Artículo

References

Asensio, V., Jornet, D.: Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3477–3512 (2019)

Aubry, J.-M.: Ultrarapidly decreasing ultradifferentiable functions, Wigner distributions and density matrices. J. Lond. Math. Soc. 2(78), 392–406 (2008)

Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966) [+]
Asensio, V., Jornet, D.: Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3477–3512 (2019)

Aubry, J.-M.: Ultrarapidly decreasing ultradifferentiable functions, Wigner distributions and density matrices. J. Lond. Math. Soc. 2(78), 392–406 (2008)

Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966)

Bierstedt, K.D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 97(2), 159–188 (2003)

Bierstedt, K.D., Meise, R.: Distinguished echelon spaces and the projective description of weighted inductive limits of type $${\cal{V}} _{d}\cal{C} (X)$$. In: Aspects of Mathematics and Its Applications. North-Holland Mathematics Library, Amsterdam, vol. 34, pp. 169–226 (1986)

Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017)

Boiti, C., Jornet, D., Oliaro, A.: The Gabor wave front set in spaces of ultradifferentiable functions. Monatsh. Math. 188(2), 199–246 (2019)

Boiti, C., Jornet, D., Oliaro, A.: Real Paley-Wiener theorems in spaces of ultradifferentiable functions. J. Funct. Anal. 278(4), 108348 (2020)

Boiti, C., Jornet, D., Oliaro, A.: About the nuclearity of $$\cal{S}_{(M_{p})}$$ and $${\cal{S}}_{\omega }$$. In: Boggiatto P. et al. (eds) Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis, pp. 121–129. Birkhäuser, Cham (2020)

Boiti, C., Jornet, D., Oliaro, A., Schindl, G.: Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis. Collect. Math. (2020). https://doi.org/10.1007/s13348-020-00296-0

Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)

Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)

Cordero, E., Pilipović, S., Rodino, L., Teofanov, N.: Quasianalytic Gelfand-Shilov spaces with application to localization operators. Rocky Mt. J. Math. 40, 1123–1147 (2010)

Debrouwere, A., Neyt, L., Vindas, J.: Characterization of nuclearity for Beurling-Björck spaces. Preprint (2019). arXiv: 1908.10886

Debrouwere, A., Neyt, L., Vindas, J.: The nuclearity of Gelfand-Shilov spaces and kernel theorems. Collect. Math. (2020). https://doi.org/10.1007/s13348-020-00286-2

Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Stud. Math. 167(2), 99–131 (2005)

Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)

Gel’fand, I.M., Shilov, G.E.: Generalized functions, vol. 2. In: Spaces of Fundamental and Generalized Functions. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. Academic Press (Harcourt Brace Jovanovich, Publishers), New York 1968 (1977)

Gel’fand, I.M., Vilenkin, N.Ya.: Generalized functions, vol. 4. In: Applications of Harmonic Analysis. Translated by Amiel Feinstein. Academic Press, New York (1964)

Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. (French) Mem. Am. Math. Soc. 16 (1955)

Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004)

Hörmander, L.: A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Mat. 29, 237–240 (1991)

Hörmander, L.: Notions of convexity. In: Progress in Mathematics, vol. 127. Birkhäuser Boston (1994)

Jiménez-Garrido, J., Sanz, J., Schindl, G.: Sectorial extensions, via Laplace transforms, in ultraholomorphic classes defined by weight functions. Result Math. 74(27) (2019)

Komatsu, H.: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)

Kruse, K.: On the nuclearity of weighted spaces of smooth functions. Ann. Polon. Math. 124(2), 173–196 (2020)

Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscr. Math. 119(3), 269–285 (2006)

Lozanov-Crvenković, Z., Perišić, D.: Hermite expansions of elements of Gelfand-Shilov spaces in quasianalytic and non quasianalytic case. Novi Sad J. Math. 37, 129–147 (2007)

Mandelbrojt, S.: Sér. Adhér. Régularisation des suites, Applications, Gauthier-Villars, Paris (1952)

Mitjagin, B.S.: Nuclearity and other properties of spaces of type S. Trudy Moskov. Mat. Obsc. 9, 317–328 (1960)

Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

Nicola, F., Rodino, L.: Global pseudo-differential calculus on Euclidean spaces. In: Pseudo-Differential Operators. Theory and Applications, vol. 4. Birkhäuser, Basel (2010)

Pietsch, A.: Nuclear Locally Convex Spaces. Springer, New York (1972)

Pilipović, S.: Tempered ultradistributions. Boll. Unione Mat. Ital., VII. Ser., B (7) 2(2), 235–251 (1988)

Pilipović, S.: Generalization of Zemanian spaces of generalized functions which have orthonormal series expansions. SIAM J. Math. Anal. 17, 477–484 (1986)

Rainer, A., Schindl, G.: Composition in ultradifferentiable classes. Stud. Math. 224(2), 97–131 (2014)

Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014)

Schindl, G.: Spaces of smooth functions of Denjoy-Carleman-type, 2009. Diploma Thesis, Universität Wien. http://othes.univie.ac.at/7715/1/2009-11-18_0304518.pdf

Schindl, G.: Exponential laws for classes of Denjoy-Carleman-differentiable mappings, 2014. PhD Thesis, Universität Wien. http://othes.univie.ac.at/32755/1/2014-01-26_0304518.pdf

Zhang, G.Z.: Theory of distributions of $$S$$ type and expansions. Chin. Math. 4, 211–221 (1963)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem