Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Navarro-Quiles, A. | es_ES |
dc.contributor.author | Romero, José-Vicente | es_ES |
dc.contributor.author | Roselló, María-Dolores | es_ES |
dc.date.accessioned | 2022-01-10T19:31:43Z | |
dc.date.available | 2022-01-10T19:31:43Z | |
dc.date.issued | 2021-04-15 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179428 | |
dc.description.abstract | [EN] The classical kinetic equation has been broadly used to describe reaction and deactivation processes in chemistry. The mathematical formulation of this deterministic nonlinear differential equation depends on reaction and deactivation rate constants. In practice, these rates must be calculated via laboratory experiments, hence involving measurement errors. Therefore, it is more realistic to treat these rates as random variables rather than deterministic constants. This leads to the randomization of the kinetic equation, and hence its solution becomes a stochastic process. In this paper we address the probabilistic analysis of a randomized kinetic model to describe reaction and deactivation by catalase of hydrogen peroxide decomposition at a given initial concentration. In the first part of the paper, we determine closed-form expressions for the probability density functions of important quantities of the aforementioned chemical process (the fractional conversion of hydrogen peroxide, the time until a fixed quantity of this fractional conversion is reached and the activity of the catalase). These expressions are obtained by taking extensive advantage of the so called Random Variable Transformation technique. In the second part, we apply the theoretical results obtained in the first part together with the principle of maximum entropy to model the hydrogen peroxide decomposition and aspergillus niger catalase deactivation using real data excerpted from the recent literature. Our results show full agreement with previous reported analysis but having as additional benefit that they provide a more complete description of both model inputs and outputs since we take into account the intrinsic uncertainties involved in modelling process | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) Grant MTM2017-89664-P. Computations have been carried thanks to the collaboration of Raul San Julian Garces and Elena Lopez Navarro Granted by European Union through the Operational Program of the European Regional Development Fund (ERDF)/European Social Fund (ESF) of the Valencian Community 2014-2020, Grants GJIDI/2018/A/009 and GJIDI/2018/A/010, respectively | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Random kinetic differential equation | es_ES |
dc.subject | Probability density function | es_ES |
dc.subject | Random Variable Transformation technique | es_ES |
dc.subject | Principle of Maximum Entropy | es_ES |
dc.subject | Chemical real data | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A full probabilistic analysis of a randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition with applications to real data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-021-01247-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//GJIDI%2F2018%2FA%2F010//AYUDA GARANTIA JUVENIL GVA: PERSONAL TECNICO-GESTOR EN MODELIZACION MATEMATICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2021). A full probabilistic analysis of a randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition with applications to real data. Journal of Mathematical Chemistry. 59(6):1479-1497. https://doi.org/10.1007/s10910-021-01247-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10910-021-01247-1 | es_ES |
dc.description.upvformatpinicio | 1479 | es_ES |
dc.description.upvformatpfin | 1497 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\432304 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | J.J. Berzelius, Sur un force jusq’ici peu remarquée qui est probablement active dans la formation des composés organiques. Jahres-Bericht 14, 237 (1835) | es_ES |
dc.description.references | M.C. Casabán, J.C. Cortés, A. Navarro-Quiles, J.V. Romero, M.D. Roselló, R.J. Villanueva, A comprehensive probabilistic solution of random SIS-type epidemiological models using the Random Variable Transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). https://doi.org/10.1016/j.cnsns.2014.12.016 | es_ES |
dc.description.references | P. Chelikani, I. Fita, P.C. Loewen, Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61(2), 192–208 (2004) | es_ES |
dc.description.references | J.C. Cortás, A. Navarro-Quiles, J.V. Romero, M.D. Roselló, A probabilistic analysis of a Beverton-Holt-type discrete model: theoretical and computing analysis. Comput. Math. Methods (2019). https://doi.org/10.1002/cmm4.1013 | es_ES |
dc.description.references | N.G. de Bruijn, Asymptotic Methods in Analysis. Dover Books on Mathematics, vol. 27 (Dover Publications Inc., Downers Grove, 2003) | es_ES |
dc.description.references | F.A. Dorini, M.S. Cecconello, L.B. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016). https://doi.org/10.1016/j.cnsns.2014.12.016 | es_ES |
dc.description.references | A. Hussein, M.M. Selim, A general probabilistic solution of randomized radioactive decay chain (RDC) model using RVT technique. Eur. Phys. J. Plus 35, 1–16 (2020). https://doi.org/10.1140/epjp/s13360-020-00389-6 | es_ES |
dc.description.references | K. Kakaei, M.D. Esrafili, A. Ehsani, Chapter 1—Introduction to catalysis, in Graphene Surfaces, Interface Science and Technology, vol. 27, ed. by K. Kakaei, M.D. Esrafili, A. Ehsani (Elsevier, Amsterdam, 2019), pp. 1–21. https://doi.org/10.1016/B978-0-12-814523-4.00001-0 | es_ES |
dc.description.references | P.W. Leeuwen, Homogeneous Catalysis: Understanding (Springer, Berlin, 2006) | es_ES |
dc.description.references | J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of Differential Entropy (CRC Press, Boca Raton, 2013) | es_ES |
dc.description.references | J. Milek, Estimation of the kinetic parameters for H$$_2$$O$$_2$$ enzymatic decomposition and for catalase deactivation. Braz. J. Chem. Eng. 35(3), 995–1004 (2018). https://doi.org/10.1590/0104-6632.20180353s20160617 | es_ES |
dc.description.references | T.T. Soong, Random Differential Equations in Science and Engineering (Academic Press, New York, 1973) | es_ES |