- -

Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Lopez-Haro, Miguel es_ES
dc.contributor.author Calvino, Jose J. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2022-01-10T19:31:46Z
dc.date.available 2022-01-10T19:31:46Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 1754-2189 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179430
dc.description.abstract [EN] The encapsulation of subnanometric metal entities (isolated metal atoms and metal clusters with a few atoms) in porous materials such as zeolites can be an effective strategy for the stabilization of those metal species and therefore can be further used for a variety of catalytic reactions. However, owing to the complexity of zeolite structures and their low stability under the electron beam, it is challenging to obtain atomic-level structural information of the subnanometric metal species encapsulated in zeolite crystallites. In this protocol, we show the application of a scanning transmission electron microscopy (STEM) technique that records simultaneously the high-angle annular dark-field (HAADF) images and integrated differential phase-contrast (iDPC) images for structural characterization of subnanometric Pt and Sn species within MFI zeolite. The approach relies on the use of a computational model to simulate results obtained under different conditions where the metals are present in different positions within the zeolite. This imaging technique allows to obtain simultaneously the spatial information of heavy elements (Pt and Sn in this work) and the zeolite framework structure, enabling direct determination of the location of the subnanometric metal species. Moreover, we also present the combination of other spectroscopy techniques as complementary tools for the STEM-iDPC imaging technique to obtain global understanding and insights on the spatial distributions of subnanometric metal species in zeolite structure. These structural insights can provide guidelines for the rational design of uniform metal-zeolite materials for catalytic applications. Precise knowledge of the structure of metals supported and stabilized by zeolite frameworks informs improved design and synthesis of the catalysts. This tutorial describes scanning transmission electron microscopy approaches for their structural analysis. es_ES
dc.description.sponsorship This work was supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the 'Severo Ochoa Program' (SEV-2016-0683). The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The XAS measurements were carried out in CLAESS beamline of ALBA synchrotron. HR STEM measurements were performed at the DME-UCA node of the ELECMI Singular Infrastructure at Cadiz University, with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). The authors thank C. W. Lopes and P. Concepcion for their help with the analysis of spectroscopic results. The financial support from ExxonMobil on this project is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Protocols es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41596-020-0366-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MAT2017-87579-R//FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Liu, L.; Lopez-Haro, M.; Calvino, JJ.; Corma Canós, A. (2021). Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites. Nature Protocols. 16(4):1-36. https://doi.org/10.1038/s41596-020-0366-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41596-020-0366-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 32887974 es_ES
dc.relation.pasarela S\433263 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder ExxonMobil Research and Engineering Company es_ES
dc.description.references Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012). es_ES
dc.description.references Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). es_ES
dc.description.references Thomas, J. M., Raja, R. & Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44, 6456–6482 (2005). es_ES
dc.description.references Hansen, T. W. et al. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508–1510 (2001). es_ES
dc.description.references Hwang, S., Chen, X., Zhou, G. & Su, D. In situ transmission electron microscopy on energy-related catalysis. Adv. Energy Mater. https://doi.org/10.1002/aenm.201902105 (2019). es_ES
dc.description.references Li, Z. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2019). es_ES
dc.description.references Pelletier, J. D. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016). es_ES
dc.description.references Kulkarni, A., Lobo-Lapidus, R. J. & Gates, B. C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46, 5997–6015 (2010). es_ES
dc.description.references Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018). es_ES
dc.description.references Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017). es_ES
dc.description.references Li, H., Wang, M., Luo, L. & Zeng, J. Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions. Adv. Sci 6, 1801471 (2019). es_ES
dc.description.references Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019). es_ES
dc.description.references Juneau, M. et al. Characterization of metal–zeolite composite catalysts: determining the environment of the active phase. ChemCatChem https://doi.org/10.1002/cctc.201902039 (2019). es_ES
dc.description.references Shamzhy, M., Opanasenko, M., Concepcion, P. & Martinez, A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 48, 1095–1149 (2019). es_ES
dc.description.references Weckhuysen, B. M. Stable platinum in a zeolite channel. Nat. Mater. 18, 778–779 (2019). es_ES
dc.description.references Gai, P. L. & Calvino, J. J. Electron microscopy in the catalysis of alkane oxidation, environmental control, and alternative energy sources. Annu. Rev. Mater. Res. 35, 465–504 (2005). es_ES
dc.description.references Gates, B. C. Atomically dispersed supported metal catalysts: seeing is believing. Trends Chem. 1, 99–110 (2019). es_ES
dc.description.references Yang, S. et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angew. Chem. Int. Ed. 56, 12553–12556 (2017). es_ES
dc.description.references Lupulescu, A. I. & Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344, 729–732 (2014). es_ES
dc.description.references Anderson, M. W. et al. Modern microscopy methods for the structural study of porous materials. Chem. Commun. (8), 907–916 (2004). es_ES
dc.description.references Mayoral, A., Carey, T., Anderson, P. A., Lubk, A. & Diaz, I. Atomic resolution analysis of silver ion-exchanged zeolite A. Angew. Chem. Int. Ed. 50, 11230–11233 (2011). es_ES
dc.description.references Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012). es_ES
dc.description.references Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010). es_ES
dc.description.references Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014). es_ES
dc.description.references Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017). es_ES
dc.description.references Slater, B., Ohsuna, T., Liu, Z. & Terasaki, O. Insights into the crystal growth mechanisms of zeolites from combined experimental imaging and theoretical studies. Faraday Discussions 136, 125–141 (2007). es_ES
dc.description.references Diaz, I. & Mayoral, A. TEM studies of zeolites and ordered mesoporous materials. Micron 42, 512–527 (2011). es_ES
dc.description.references Wan, W., Su, J., Zou, X. D. & Willhammar, T. Transmission electron microscopy as an important tool for characterization of zeolite structures. Inorg. Chem. Frontiers 5, 2836–2855 (2018). es_ES
dc.description.references Mishra, R., Ishikawa, R., Lupini, A. R. & Pennycook, S. J. Single-atom dynamics in scanning transmission electron microscopy. MRS Bulletin 42, 644–652 (2017). es_ES
dc.description.references DeLaRiva, A. T., Hansen, T. W., Challa, S. R. & Datye, A. K. In situ transmission electron microscopy of catalyst sintering. J. Catal. 308, 291–305 (2013). es_ES
dc.description.references Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016). es_ES
dc.description.references Shen, B. et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. e1906103 (2019). es_ES
dc.description.references Egerton, R. F. & Watanabe, M. Characterization of single-atom catalysts by EELS and EDX spectroscopy. Ultramicroscopy 193, 111–117 (2018). es_ES
dc.description.references Bonilla, G. et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents. Chem. Mater. 16, 5697–5705 (2004). es_ES
dc.description.references Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nat. Mater. 8, 959–965 (2009). es_ES
dc.description.references Grand, J. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nat. Mater. 16, 1010–1015 (2017). es_ES
dc.description.references Varela, M. et al. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005). es_ES
dc.description.references Mitchell, DavidR. G. & Mitchell, J. B. Nancarrow probe current determination in analytical TEM/STEM and its application to the characterization of large area EDS detectors. Microscopy Res. Technique 78, 886–893 (2015). es_ES
dc.description.references Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy (Imperial College Press, 2010). es_ES
dc.description.references Díaz, I., Kokkoli, E., Terasaki, O. & Tsapatsis, M. Surface structure of zeolite (MFI) crystals. Chem. Mater. 16, 5226–5232 (2004). es_ES
dc.description.references Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998). es_ES
dc.description.references Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010). es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998). es_ES
dc.description.references Pei, Y. et al. Catalytic properties of intermetallic platinum–tin nanoparticles with non-stoichiometric compositions. J. Catal. 374, 136–142 (2019). es_ES
dc.description.references Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016). es_ES
dc.description.references de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001). es_ES
dc.description.references Bare, S. R. et al. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. J. Am. Chem. Soc. 127, 12924–12932 (2005). es_ES
dc.description.references Hammond, C. et al. Identification of active and spectator Sn sites in Sn-beta following solid-state stannation, and consequences for Lewis acid catalysis. ChemCatChem 7, 3322–3331 (2015). es_ES
dc.description.references Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019). es_ES
dc.description.references Derevyannikova, E. A. et al. Structural insight into strong Pt–CeO2 interaction: from single Pt atoms to PtOx clusters. J. Phys. Chem. C 123, 1320–1334 (2018). es_ES
dc.description.references Sun, Q. et al. Subnanometer bimetallic Pt–Zn clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202003349 (2020). es_ES
dc.description.references Concepcion, P. et al. The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of alpha,beta-unsaturated aldehydes. Phys. Chem. Chem. Phys. 15, 12048–12055 (2013). es_ES
dc.description.references Heiz, U., Sanchez, A., Abbet, S. & Schneider, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999). es_ES
dc.description.references Serykh, A. I. et al. Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Phys. Chem. Chem. Phys. 2, 5647–5652 (2000). es_ES
dc.description.references Drozdová, L. et al. Subnanometer platinum clusters in zeolite NaEMT via stoichiometric carbonyl clusters. Microporous Mesoporous Mater. 35–36, 511–519 (2000). es_ES
dc.description.references Mishra, D. K., Dabbawala, A. A. & Hwang, J.-S. Ruthenium nanoparticles supported on zeolite Y as an efficient catalyst for selective hydrogenation of xylose to xylitol. J. Mol. Catal. A: Chem. 376, 63–70 (2013). es_ES
dc.description.references Visser, T. et al. Promotion effects in the oxidation of CO over zeolite-supported Pt nanoparticles. J. Phys. Chem. B 109, 3822–3831 (2005). es_ES
dc.description.references Rivallan, M. et al. Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angew. Chem. Int. Ed. 49, 785–789 (2010). es_ES
dc.description.references Balakrishnan, K. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 127, 287–306 (1991). es_ES
dc.description.references Panja, C. & Koel, B. E. Probing the influence of alloyed Sn on Pt(100) surface chemistry by CO chemisorption. Israel J. Chem 38, 365–374 (1998). es_ES
dc.description.references Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018). es_ES
dc.description.references Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). es_ES
dc.description.references Zhang, H., Liu, G., Shi, L. & Ye, J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). es_ES
dc.description.references Wiktor, C., Meledina, M., Turner, S., Lebedev, O. I. & Fischer, R. A. Transmission electron microscopy on metal–organic frameworks – a review. J. Mater. Chem. A 5, 14969–14989 (2017). es_ES
dc.description.references Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020). es_ES
dc.description.references Zuo, Q. et al. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 58, 10198–10203 (2019). es_ES
dc.description.references Liu, L. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019). es_ES
dc.description.references Zhou, Y. et al. Local structure evolvement in MOF single crystals unveiled by scanning transmission electron microscopy. Chem. Mater. 32, 4966–4972 (2020). es_ES
dc.description.references Borisevich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl Acad. Sci. USA 103, 3044–3048 (2006). es_ES
dc.description.references Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013). es_ES
dc.description.references Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017). es_ES
dc.description.references Chen, Z. et al. Direct synthesis of core-shell MFI zeolites with spatially tapered trimodal mesopores via controlled orthogonal self-assembly. Nanoscale 11, 16667–16676 (2019). es_ES
dc.description.references Kliewer, C. E. in Zeolite Characterization and Catalysis (eds. Chester, A. W. & Derouane, E. G.) (Springer, 2009). es_ES
dc.description.references Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). es_ES
dc.description.references Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018). es_ES
dc.description.references Goldsmith, B. R., Peters, B., Johnson, J. K., Gates, B. C. & Scott, S. L. Beyond ordered materials: understanding catalytic sites on amorphous solids. ACS Catal. 7, 7543–7557 (2017). es_ES
dc.description.references van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). es_ES
dc.description.references Hodnik, N., Dehm, G. & Mayrhofer, K. J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016). es_ES
dc.description.references Boyes, E. D., LaGrow, A. P., Ward, M. R., Mitchell, R. W. & Gai, P. L. Single atom dynamics in chemical reactions. Acc. Chem. Res. 53, 390–399 (2020). es_ES
dc.description.references Nakamura, E. Atomic-resolution transmission electron microscopic movies for study of organic molecules, assemblies, and reactions: the first 10 years of development. Acc. Chem. Res. 50, 1281–1292 (2017). es_ES
dc.description.references Li, T. et al. Cryo-TEM and electron tomography reveal leaching-induced pore formation in ZSM-5 zeolite. J. Mater. Chem. A 7, 1442–1446 (2019). es_ES
dc.description.references Li, Y. et al. Cryo-EM structures of atomic surfaces and host–guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019). es_ES
dc.description.references Liu, L. & Corma, A. Evolution of isolated atoms and clusters in catalysis. Trends Chem. 2, 383–400 (2020). es_ES
dc.description.references Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018). es_ES
dc.description.references De Wael, A., De Backer, A., Jones, L., Nellist, P. D. & Van Aert, S. Hybrid statistics-simulations based method for atom-counting from ADF STEM images. Ultramicroscopy 177, 69–77 (2017). es_ES
dc.description.references Hwang, J., Zhang, J. Y., D’Alfonso, A. J., Allen, L. J. & Stemmer, S. Three-dimensional imaging of individual dopant atoms in SrTiO3. Phys. Rev. Lett. 111, 266101 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem