Mostrar el registro sencillo del ítem
dc.contributor.author | Doostkami, Hesam | es_ES |
dc.contributor.author | Roig-Flores, Marta | es_ES |
dc.contributor.author | Negrini, Alberto | es_ES |
dc.contributor.author | Mezquida-Alcaraz, Eduardo J. | es_ES |
dc.contributor.author | Serna Ros, Pedro | es_ES |
dc.date.accessioned | 2022-01-18T08:11:28Z | |
dc.date.available | 2022-01-18T08:11:28Z | |
dc.date.issued | 2020-09-22 | es_ES |
dc.identifier.isbn | 978-3-030-58481-8 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179789 | |
dc.description.abstract | [EN] Self-healing is the capability of a material to repair its damage autonomously. Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC) has potentially higher self-healing properties than conventional concrete because of its lower water/binder content and controlled microcracking due to the high fiber content. This work uses a novel methodology based on the permeability to evaluate autogenous self-healing of UHPFRC and enhanced self-healing, incorporating several additions. To this purpose, one UHPFRC was selected and modified to include alumina nanofibers in 0.25% by the cement weight, nanocellulose (nanocrystals and nanofibers), in a dosage of 0.15% by the cement weight, and 0.8-1.6% of a crystalline admixture. The results obtained show that the methodology proposed allows the evaluation of the self-healing capability of different families of concrete mixes that suffered a similar level of damage using permeability tests adapted to the specific properties of UHPFRC. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the European Union¿s Horizon 2020 ReSHEALience project (Grant Agreement No. 760824). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Fibre Reinforced Concrete: Improvements and Innovations | es_ES |
dc.relation.ispartofseries | RILEM Bookseries;30 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ultra High-Performance Fiber Reinforced Concrete | es_ES |
dc.subject | Self-healing | es_ES |
dc.subject | Crystalline admixtures | es_ES |
dc.subject | Nanocellulose | es_ES |
dc.subject | Alumina nanofibers | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Evaluation of the Self-healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete with Nano-Particles and Crystalline Admixtures by Means of Permeability | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-58482-5_45 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/760824/EU/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Doostkami, H.; Roig-Flores, M.; Negrini, A.; Mezquida-Alcaraz, EJ.; Serna Ros, P. (2020). Evaluation of the Self-healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete with Nano-Particles and Crystalline Admixtures by Means of Permeability. Springer. 489-499. https://doi.org/10.1007/978-3-030-58482-5_45 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 10th RILEM-fib X International Symposium on Fibre Reinforced Concrete (BEFIB 2020) | es_ES |
dc.relation.conferencedate | Septiembre 20-22,2020 | es_ES |
dc.relation.conferenceplace | Valencia, España | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-58482-5_45 | es_ES |
dc.description.upvformatpinicio | 489 | es_ES |
dc.description.upvformatpfin | 499 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\434668 | es_ES |
dc.description.references | Homma, D., Mihashi, H., Nishiwaki, T.: Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 7(2), 217–228 (2009) | es_ES |
dc.description.references | Maes, M., Snoeck, D., De Belie, N.: Chloride penetration in cracked mortar and the influence of autogenous crack healing. Constr. Build. Mater. 115, 114–124 (2016) | es_ES |
dc.description.references | Edvardsen, C.: Water Permeability and Autogenous Healing of Cracks in Concrete, vol. 96 (1999) | es_ES |
dc.description.references | De Belie, N., et al.: A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 5(17) (2018) | es_ES |
dc.description.references | Wang, H.L., Dai, J.G., Sun, X.Y., Zhang, X.L.: Characteristics of concrete cracks and their influence on chloride penetration. Constr. Build. Mater. 107, 216–225 (2016) | es_ES |
dc.description.references | Wang, K., Jansen, D.C., Shah, S.P., Karr, A.F.: Permeability study of cracked concrete. Cem. Concr. Res. (1997) | es_ES |
dc.description.references | Šavija, B., Schlangen, E.: Autogeneous healing and chloride ingress in cracked concrete. Heron 61(1), 15–32 (2016) | es_ES |
dc.description.references | Ismail, M., Toumi, A., François, R., Gagné, R.: Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem. Concr. Res. 38(8–9), 1106–1111 (2008) | es_ES |
dc.description.references | Habel, K., Gauvreau, P.: Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cem. Concr. Compos. 30(10), 938–946 (2008) | es_ES |
dc.description.references | Denarié, E., Brühwiler, E.: Strain-hardening ultra-high performance fibre reinforced concrete: deformability versus strength optimization. Restor. Build. Monum. 17(6), 397–410 (2014) | es_ES |
dc.description.references | Granger, S., Pijaudier-Cabot, G., Loukili, A.: Mechanical behavior of self-healed ultra high performance concrete: from experimental evidence to modeling. In: Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, vol. 3, pp. 1827–1834 (2007) | es_ES |
dc.description.references | Escoffres, P., Desmettre, C., Charron, J.P.: Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 173, 763–774 (2018) | es_ES |
dc.description.references | Sisomphon, K., Copuroglu, O., Koenders, E.A.B.: Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 34(4), 566–574 (2012) | es_ES |
dc.description.references | Roig-Flores, M., Moscato, S., Serna, P., Ferrara, L.: Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86, 1–11 (2015) | es_ES |
dc.description.references | Roig-Flores, M., Pirritano, F., Serna, P., Ferrara, L.: Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 114, 447–457 (2016) | es_ES |
dc.description.references | Ferrara, L., Krelani, V., Carsana, M.: A ‘fracture testing’ based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 68, 535–551 (2014) | es_ES |
dc.description.references | Ferrara, L., Krelani, V., Moretti, F.: On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing. Smart Mater. Struct. 25(8), 1–17 (2016) | es_ES |
dc.description.references | Cuenca, E., Cislaghi, G., Puricelli, M., Ferrara, L.: Influence of self-healing stimulated via crystalline admixtures on chloride penetration. In: America Concrete Institute, vol. 2018(SP 326), pp. 1–10. ACI Spec. Publ. (2018) | es_ES |
dc.description.references | Borg, R.P., Cuenca, E., Gastaldo Brac, E.M., Ferrara, L.: Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. J. Sustain. Cem. Mater. 7(3), 141–159 (2018) | es_ES |
dc.description.references | López, J.Á., Serna, P., Navarro-Gregori, J., Camacho, E.: An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Mater. Struct. 48(11), 3703–3718 (2014). https://doi.org/10.1617/s11527-014-0434-0 | es_ES |
dc.description.references | López, J.Á.: Characterisation of the Tensile Behaviour of UHPFRC By Means of Four-Point Bending Tests, March 2017 | es_ES |
dc.description.references | Negrini, A., Roig-Flores, M., Mezquida-Alcaraz, E.J., Ferrara, L., Serna, P.: Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. In: MATEC Web Conference, vol. 289, p. 01006 (2019) | es_ES |