- -

A Twitter Political Corpus of the 2019 10N Spanish Election

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Twitter Political Corpus of the 2019 10N Spanish Election

Mostrar el registro completo del ítem

Sánchez-Junquera, J.; Ponzetto, SP.; Rosso, P. (2020). A Twitter Political Corpus of the 2019 10N Spanish Election. Springer. 41-49. https://doi.org/10.1007/978-3-030-58323-1_4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179804

Ficheros en el ítem

Metadatos del ítem

Título: A Twitter Political Corpus of the 2019 10N Spanish Election
Autor: Sánchez-Junquera, Javier Ponzetto, Simone Paolo Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] We present a corpus of Spanish tweets of 15 Twitter accounts of politicians of the main five parties (PSOE, PP, Cs, UP and VOX) covering the campaign of the Spanish election of 10th November 2019 (10N Spanish Election). ...[+]
Palabras clave: Twitter , Political text analysis , Topic detection , Sentiment and emotion analysis
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-58323-1
Fuente:
Text, Speech, and Dialogue. 23rd International Conference, TSD 2020.
DOI: 10.1007/978-3-030-58323-1_4
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-58323-1_4
Título del congreso: 23rd International Conference on Text, Speech and Dialogue (TSD 2020)
Lugar del congreso: Online
Fecha congreso: Septiembre 08-11,2020
Serie: Lecture Notes in Computer Science;12284
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
Agradecimientos:
The work of the authors from the Universitat Politecnica de Valencia was funded by the Spanish MICINN under the research project MISMISFAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE ...[+]
Tipo: Comunicación en congreso Capítulo de libro

References

Abercrombie, G., Nanni, F., Batista-Navarro, R., Ponzetto, S.P.: Policy preference detection in parliamentary debate motions. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong, China, pp. 249–259. Association for Computational Linguistics, November 2019

Ekman, P., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712 (1987)

Gao, W., Sebastiani, F.: Tweet sentiment: from classification to quantification. In: 2015 IEEE/ACM International Conference on ASONAM, pp. 97–104. IEEE (2015) [+]
Abercrombie, G., Nanni, F., Batista-Navarro, R., Ponzetto, S.P.: Policy preference detection in parliamentary debate motions. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong, China, pp. 249–259. Association for Computational Linguistics, November 2019

Ekman, P., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712 (1987)

Gao, W., Sebastiani, F.: Tweet sentiment: from classification to quantification. In: 2015 IEEE/ACM International Conference on ASONAM, pp. 97–104. IEEE (2015)

Glavaš, G., Nanni, F., Ponzetto, S.P.: Computational analysis of political texts: bridging research efforts across communities. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, Florence, Italy, pp. 18–23. Association for Computational Linguistics, July 2019

Kornilova, A., Argyle, D., Eidelman, V.: Party matters: enhancing legislative embeddings with author attributes for vote prediction, pp. 510–515. Association for Computational Linguistics, July 2018

Lowe, W., Benoit, K., Mikhaylov, S., Laver, M.: Scaling policy preferences from coded political texts. Legis. Stud. Q. 36(1), 123–155 (2011)

Marchetti-Bowick, M., Chambers, N.: Learning for microblogs with distant supervision: political forecasting with Twitter. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, pp. 603–612. Association for Computational Linguistics, April 2012

Menini, S., Nanni, F., Ponzetto, S.P., Tonelli, S.: Topic-based agreement and disagreement in US electoral manifestos. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, pp. 2938–2944. Association for Computational Linguistics, September 2017

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: Semeval-2016 task 4: sentiment analysis in Twitter. arXiv preprint arXiv:1912.01973 (2019)

Nanni, F., et al.: Findings from the hackathon on understanding euroscepticism through the lens of textual data. European Language Resources Association (ELRA), May 2018

O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010, Washington, DC, USA, 23–26 May 2010 (2010)

Rheault, L., Cochrane, C.: Word embeddings for the analysis of ideological placement in parliamentary corpora. Polit. Anal. 1–22 (2019)

Roberts, M.E., et al.: Structural topic models for open-ended survey responses. Am. J. Polit. Sci. 58(4), 1064–1082 (2014)

Sidorov, G., et al.: Empirical study of machine learning based approach for opinion mining in tweets. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012. LNCS (LNAI), vol. 7629, pp. 1–14. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37807-2_1

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inform. Sci. Technol. 61(12), 2544–2558 (2010)

Thomas, M., Pang, B., Lee, L.: Get out the vote: determining support or opposition from congressional floor-debate transcripts. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 327–335. Association for Computational Linguistics, July 2006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem