Simarro, MA.; García Mollá, VM.; Martínez Zaldívar, FJ.; Gonzalez, A. (2020). Low Complexity Near-ML Sphere Decoding based on a MMSE ordering for Generalized Spatial Modulation. IEEE. 1-6. https://doi.org/10.1109/PIMRC48278.2020.9217259
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179811
Title:
|
Low Complexity Near-ML Sphere Decoding based on a MMSE ordering for Generalized Spatial Modulation
|
Author:
|
Simarro, M. Angeles
García Mollá, Víctor Manuel
Martínez Zaldívar, Francisco José
Gonzalez, Alberto
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Issued date:
|
|
Abstract:
|
[EN] Generalized Spatial Modulation (GSM) is a trans-mission technique used in wireless communications in which only part of the transmitter antennas are activated during each time signaling period. A low complexity Sphere ...[+]
[EN] Generalized Spatial Modulation (GSM) is a trans-mission technique used in wireless communications in which only part of the transmitter antennas are activated during each time signaling period. A low complexity Sphere Decoding (SD) algorithm to achieve maximum likelihood (ML) detection has recently been proposed by using subproblem partitions, sorting preprocessing and radius updating. However, the ordering method has a serious limitation when the number of activated antennas is equal to the number of received antennas. Therefore, alternative sorting methods are studied in the present paper. In addition, the computational cost of the ML algorithm can be high when the system sizes increases. In this paper a suboptimal version is proposed where only the first L SD subproblems are carried out. The results show that the proposed algorithm achieves near optimal performance at lower computational cost than ML algorithms.
[-]
|
Subjects:
|
Complexity
,
GSM
,
MIMO
,
Performance
,
Signal detection
|
Copyrigths:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-7281-4490-0
|
Source:
|
2020 IEEE 31st Annual International Symposium onPersonal, Indoor and Mobile Radio Communications. (issn:
1558-2612
)
|
DOI:
|
10.1109/PIMRC48278.2020.9217259
|
Publisher:
|
IEEE
|
Publisher version:
|
https://doi.org/10.1109/PIMRC48278.2020.9217259
|
Conference name:
|
31th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2020)
|
Conference place:
|
Online
|
Conference date:
|
Agosto 31-Septiembre 03,2020
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/
info:eu-repo/grantAgreement///PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/
|
Thanks:
|
This work has been partially supported by Spanish Ministry of Science, Innovation and Universities
and by European Union through grant RTI2018-098085-
BC41 (MCUI/AEI/FEDER), by GVA through PROMETEO/2019/109 and by Catedra ...[+]
This work has been partially supported by Spanish Ministry of Science, Innovation and Universities
and by European Union through grant RTI2018-098085-
BC41 (MCUI/AEI/FEDER), by GVA through PROMETEO/2019/109 and by Catedra Telefonica-UPV through
SSENCE project.
[-]
|
Type:
|
Comunicación en congreso
Artículo
Capítulo de libro
|