Wubben, J.; Aznar, P.; Fabra Collado, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2020). Toward secure, efficient, and seamless reconfiguration of UAV swarm formations. IEEE. 1-7. https://doi.org/10.1109/DS-RT50469.2020.9213669
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179834
Title:
|
Toward secure, efficient, and seamless reconfiguration of UAV swarm formations
|
Author:
|
Wubben, Jamie
Aznar, Pablo
Fabra Collado, Francisco José
Tavares De Araujo Cesariny Calafate, Carlos Miguel
Cano, Juan-Carlos
Manzoni, Pietro
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Issued date:
|
|
Abstract:
|
[EN] Unmanned Aerial vehicles (UAVs) have gained a lot
of interest over the last years due to the many fields of potential
application. Nowadays, researchers are becoming interested in
groups of UAVs working together. The ...[+]
[EN] Unmanned Aerial vehicles (UAVs) have gained a lot
of interest over the last years due to the many fields of potential
application. Nowadays, researchers are becoming interested in
groups of UAVs working together. The collaborations between
UAVs open a wide field of opportunities, because they are
typically able to do more sophisticated tasks than a single
UAV. However, collaboration between multiple UAVs is still a
complex task, and significant challenges need to be addressed
before their mainstream adoption. For instance, the automatic
reconfiguration of a swarm can be used to adapt the swarm to
changing application demands to solve a task in a more efficient
and effective manner. However, the chances of collision become
high if reconfiguration is not carefully planned. In this work we
propose an approach to allow changing the shape of a UAV
formation during flight through a computational inexpensive
method that is able to decrease collision chances significantly.
During the experiments we tested different reconfiguration events
that are prone to collisions. Results have shown that our approach
maintains a safe distance (greater than 5 meters) between the
UAVs, while keeping the time overhead limited to a few tenths
of a second. Furthermore, scalability tests have proven that our
approach can handle the reconfiguration of at least 25 UAVs
simultaneously.
[-]
|
Copyrigths:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-7281-7343-6
|
Source:
|
Proceedings of the 2020 IEEE/ACM. 24th International Symposium on Distributed Simulation and Real TimeApplications (DS-RT).
|
DOI:
|
10.1109/DS-RT50469.2020.9213669
|
Publisher:
|
IEEE
|
Publisher version:
|
https://doi.org/10.1109/DS-RT50469.2020.9213669
|
Conference name:
|
24th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2020)
|
Conference place:
|
Online
|
Conference date:
|
Septiembre 14-16,2020
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
|
Thanks:
|
This work was partially supported by the Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018, Spain, under ...[+]
This work was partially supported by the Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018, Spain, under Grant RTI2018-096384-B-I00.
[-]
|
Type:
|
Comunicación en congreso
Capítulo de libro
|