- -

The Role of Personality and Linguistic Patterns in Discriminating Between Fake News Spreaders and Fact Checkers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Role of Personality and Linguistic Patterns in Discriminating Between Fake News Spreaders and Fact Checkers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giachanou, Anastasia es_ES
dc.contributor.author Ríssola, Esteban A. es_ES
dc.contributor.author Ghanem, Bilal es_ES
dc.contributor.author Crestani, Fabio es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2022-01-18T08:13:10Z
dc.date.available 2022-01-18T08:13:10Z
dc.date.issued 2020-06-26 es_ES
dc.identifier.isbn 978-3-030-51309-2 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179851
dc.description.abstract [EN] Users play a critical role in the creation and propagation of fake news online by consuming and sharing articles with inaccurate information either intentionally or unintentionally. Fake news are written in a way to confuse readers and therefore understanding which articles contain fabricated information is very challenging for non-experts. Given the di culty of the task, several fact checking websites have been developed to raise awareness about which articles contain fabricated information. As a result of those platforms, several users are interested to share posts that cite evidence with the aim to refute fake news and warn other users. These users are known as fact checkers. However, there are users who tend to share false information, who can be characterised as potential fake news spreaders. In this paper, we propose the CheckerOrSpreader model that can classify a user as a potential fact checker or a potential fake news spreader. Our model is based on a Convolutional Neural Network (CNN) and combines word embeddings with features that represent users' personality traits and linguistic patterns used in their tweets. Experimental results show that leveraging linguistic patterns and personality traits can improve the performance in di erentiating between checkers and spreaders. es_ES
dc.description.sponsorship The work of the first author is supported by the SNSF Early Postdoc Mobility grant under the project Early Fake News Detection on Social Media, Switzerland (P2TIP2 181441). The work of Paolo Rosso is partially funded by the Spanish MICINN under the research project MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018- 096212-B-C31). es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof 25th International Conference on Applications of Natural Language to Information Systems, NLDB 2020. Proceedings es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fact checkers detection es_ES
dc.subject Personality traits es_ES
dc.subject Linguistic patterns es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title The Role of Personality and Linguistic Patterns in Discriminating Between Fake News Spreaders and Fact Checkers es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-51310-8_17 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//P2TIP2 181441/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Giachanou, A.; Ríssola, EA.; Ghanem, B.; Crestani, F.; Rosso, P. (2020). The Role of Personality and Linguistic Patterns in Discriminating Between Fake News Spreaders and Fact Checkers. Springer. 181-192. https://doi.org/10.1007/978-3-030-51310-8_17 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 25th International Conference on Application of Natural Language to Information Systems (NLDB 2020) es_ES
dc.relation.conferencedate Junio 24-26,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-51310-8_17 es_ES
dc.description.upvformatpinicio 181 es_ES
dc.description.upvformatpfin 192 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\434341 es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.description.references Bai, S., Zhu, T., Cheng, L.: Big-Five Personality Prediction Based on User Behaviors at Social Network Sites. https://arxiv.org/abs/1204.4809 (2012) es_ES
dc.description.references Bastos, M.T., Mercea, D.: The Brexit botnet and user-generated hyperpartisan news. Soc. Sci. Comput. Rev. 37(1), 38–54 (2019) es_ES
dc.description.references Burbach, L., Halbach, P., Ziefle, M., Calero Valdez, A.: Who shares fake news in online social networks? In: Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2019, pp. 234–242 (2019) es_ES
dc.description.references Cer, D., et al.: Universal Sentence Encoder. https://arxiv.org/abs/1803.11175 (2018) es_ES
dc.description.references DiFranzo, D., Gloria, M.J.K.: Filter Bubbles and Fake News. ACM Crossroads 23(3), 32–35 (2017) es_ES
dc.description.references Farías, D.I.H., Patti, V., Rosso, P.: Irony detection in Twitter: the role of affective content. ACM Trans. Internet Technol. (TOIT) 16(3), 1–24 (2016) es_ES
dc.description.references Ghanem, B., Glavaš, G., Giachanou, A., Paolo, S., Ponzetto, P.R., Rangel, F.: UPV-UMA at CheckThat! lab: verifying Arabic claims using a cross lingual approach. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum (2019) es_ES
dc.description.references Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. (TOIT) 20(2), 1–18 (2020) es_ES
dc.description.references Giachanou, A., Gonzalo, J., Crestani, F.: Propagating sentiment signals for estimating reputation polarity. Inf. Process. Manage. 56(6), 102079 (2019) es_ES
dc.description.references Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 877–880 (2019) es_ES
dc.description.references Goldberg, L.R.: A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. Pers. Psychol. Europe 7(1), 7–28 (1999) es_ES
dc.description.references Heinström, J.: Five personality dimensions and their influence on information behaviour. Inf. Res. 9(1), 1–9 (2003) es_ES
dc.description.references John, O.P., Srivastava, S.: The big-five trait taxonomy: history, measurement, and theoretical perspectives. In: Handbook of Personality: Theory and Research, pp. 102–138 (1999) es_ES
dc.description.references Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34 (2010) es_ES
dc.description.references Neuman, Y.: Computational Personality Analysis: Introduction, Practical Applications and Novel Directions, 1st edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-42460-6 es_ES
dc.description.references Neuman, Y., Cohen, Y.: A vectorial semantics approach to personality assessment. Sci. Rep. 4(1), 1–6 (2014) es_ES
dc.description.references Oyeyemi, S.O., Gabarron, E., Wynn, R.: Ebola, Twitter, and misinformation: a dangerous combination? BMJ Clin. Res. 349, g6178 (2014) es_ES
dc.description.references Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The Development and Psychometric Properties of LIWC 2015. Technical report (2015) es_ES
dc.description.references Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, pp. 1532–1543 (2014) es_ES
dc.description.references Pennycook, G., Rand, D.: Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. J. Pers. 88, 185–200 (2018) es_ES
dc.description.references Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 1589–1599 (2011) es_ES
dc.description.references Rangel, F., Rosso, P.: Overview of the 7th author profiling task at PAN 2019: bots and gender profiling in Twitter. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum (2019) es_ES
dc.description.references Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2931–2937 (2017) es_ES
dc.description.references Ríssola, E.A., Bahrainian, S.A., Crestani, F.: Personality recognition in conversations using capsule neural networks. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019, pp. 180–187 (2019) es_ES
dc.description.references Ross, C., Orr, E.S., Sisic, M., Arseneault, J.M., Simmering, M.G., Orr, R.R.: Personality and motivations associated with Facebook use. Comput. Hum. Behav. 25(2), 578–586 (2009) es_ES
dc.description.references Shu, K., Wang, S., Liu, H.: Understanding user profiles on social media for fake news detection. In: Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval, MIPR 2018, pp. 430–435 (2018) es_ES
dc.description.references Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media. https://arxiv.org/abs/1809.01286 (2018) es_ES
dc.description.references Vo, N., Lee, K.: Learning from fact-checkers: analysis and generation of fact-checking language. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 335–344 (2019) es_ES
dc.description.references Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018) es_ES
dc.description.references Wang, W.Y.: Liar, Liar Pants on Fire: A New Benchmark Dataset for Fake News Detection. https://arxiv.org/abs/1705.00648 (2017) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem