dc.contributor.author |
Serrano-Guerrero, Xavier
|
es_ES |
dc.contributor.author |
Siavichay, Luis-Fernando
|
es_ES |
dc.contributor.author |
Clairand, Jean-Michel
|
es_ES |
dc.contributor.author |
Escrivá-Escrivá, Guillermo
|
es_ES |
dc.date.accessioned |
2022-01-18T08:13:16Z |
|
dc.date.available |
2022-01-18T08:13:16Z |
|
dc.date.issued |
2020-01-01 |
es_ES |
dc.identifier.isbn |
978-3-030-32022-5 |
es_ES |
dc.identifier.issn |
2194-5365 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/179855 |
|
dc.description.abstract |
[EN] The electricity sector presents new challenges in the operation and planning of power systems, such as the forecast of power
demand. This paper proposes a comprehensive approach for evaluating statistical methods and techniques of electric demand forecast. The
proposed approach is based on smoothing methods, simple and multiple
regressions, and ARIMA models, applied to two real university buildings
from Ecuador and Spain. The results are analyzed by statistical metrics
to assess their predictive capacity, and they indicate that the Holt-Winter
and ARIMA methods have the best performance to forecast the electricity demand (ED). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Nature |
es_ES |
dc.relation.ispartof |
Advances in Emerging Trends and Technologies |
es_ES |
dc.relation.ispartofseries |
Advances in Intelligent Systems and Computing;1067 |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
ARIMA |
es_ES |
dc.subject |
Electric demand |
es_ES |
dc.subject |
Forecast |
es_ES |
dc.subject |
Load uncertainties |
es_ES |
dc.subject |
Statistical methods |
es_ES |
dc.subject |
Winter |
es_ES |
dc.subject.classification |
INGENIERIA ELECTRICA |
es_ES |
dc.title |
Forecasting Building Electric Consumption Patterns through Statistical Methods |
es_ES |
dc.type |
Comunicación en congreso |
es_ES |
dc.type |
Artículo |
es_ES |
dc.type |
Capítulo de libro |
es_ES |
dc.identifier.doi |
10.1007/978-3-030-32033-1_16 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement///6602277-01//Apoyo tecnológico entre la UPV y la Universidad Politécnica Salesiana para la mejora de la eficiencia energética en edificaciones de la zona ecuatorial de los Andes/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica |
es_ES |
dc.description.bibliographicCitation |
Serrano-Guerrero, X.; Siavichay, L.; Clairand, J.; Escrivá-Escrivá, G. (2020). Forecasting Building Electric Consumption Patterns through Statistical Methods. Springer Nature. 164-175. https://doi.org/10.1007/978-3-030-32033-1_16 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.conferencename |
1er Congreso Internacional sobre Avances en Nuevas Tendencias y Tecnologías (ICAETT 2019) |
es_ES |
dc.relation.conferencedate |
Mayo 29-31,2019 |
es_ES |
dc.relation.conferenceplace |
Quito, Ecuador |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/978-3-030-32033-1_16 |
es_ES |
dc.description.upvformatpinicio |
164 |
es_ES |
dc.description.upvformatpfin |
175 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.relation.pasarela |
S\406589 |
es_ES |
dc.description.references |
Abedinia, O., Amjady, N., Zareipour, H.: A new feature selection technique for load and price forecast of electrical power systems. IEEE Trans. Power Syst. 32(1), 62–74 (2017). https://doi.org/10.1109/TPWRS.2016.2556620 |
es_ES |
dc.description.references |
Amber, K.P., Ahmad, R., Aslam, M.W., Kousar, A., Usman, M., Khan, M.S.: Intelligent techniques for forecasting electricity consumption of buildings. Energy 157, 886–893 (2018). https://doi.org/10.1016/j.energy.2018.05.155 |
es_ES |
dc.description.references |
Bianchi, F.M., Santis, E.D.E., Rizzi, A., Sadeghian, A.: Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access 3, 1931–1943 (2015). https://doi.org/10.1109/ACCESS.2015.2485943 |
es_ES |
dc.description.references |
Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 22(9), 57–57 (2002). https://doi.org/10.1016/j.energy.2018.05.155 . http://ieeexplore.ieee.org/document/4312577/ |
es_ES |
dc.description.references |
Ding, N., Benoit, C., Foggia, G., Bésanger, Y., Wurtz, F.: Neural network-based model design for short-term load forecast in distribution systems. IEEE Trans. Power Syst. 31(1), 72–81 (2016). https://doi.org/10.1109/TPWRS.2015.2390132 |
es_ES |
dc.description.references |
Elias, C.N., Hatziargyriou, N.D.: An annual midterm energy forecasting model using fuzzy logic. IEEE Trans. Power Syst. 24(1), 469–478 (2009) |
es_ES |
dc.description.references |
González-Romera, E., Jaramillo-Morán, M.Á., Carmona-Fernández, D.: Monthly electric energy demand forecasting based. IEEE Trans. Power Syst. 21(4), 1946–1953 (2006) |
es_ES |
dc.description.references |
Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation Full Text as PDF Full Text in HTML. IEEE Trans. Power Syst. 16(1), 4333 (2014) |
es_ES |
dc.description.references |
Khosravi, A., Nahavandi, S.: Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans. Ind. Inform. 10(2), 1055–1063 (2014). https://doi.org/10.1109/TII.2013.2285650 |
es_ES |
dc.description.references |
Kroposki, B., et al.: Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag. 15(2), 61–73 (2017). https://doi.org/10.1109/MPE.2016.2637122 |
es_ES |
dc.description.references |
Liu, B., Nowotarski, J., Hong, T., Weron, R.: Probabilistic load forecasting via quantile regression averaging on sister forecasts. IEEE Trans. Smart Grid 8(2), 730–737 (2017). https://doi.org/10.1109/TSG.2015.2437877 |
es_ES |
dc.description.references |
Meira, E., Oliveira, D., Luiz, F., Oliveira, C.: Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 144, 776–788 (2018). https://doi.org/10.1016/j.energy.2017.12.049 |
es_ES |
dc.description.references |
Park, S., Han, S.: Demand power forecasting with data mining method in smart grid. In: 2017 IEEE Innovative Smart Grid Technologies - Asia (2017). https://doi.org/10.1109/ISGT-Asia.2017.8378423 |
es_ES |
dc.description.references |
Quilumba, F.L., Lee, W.J., Huang, H., Wang, D.Y., Szabados, R.L.: Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Trans. Smart Grid 6(2), 911–918 (2015). https://doi.org/10.1109/TSG.2014.2364233 . http://ieeexplore.ieee.org/document/6945384/ |
es_ES |
dc.description.references |
Raza, M.Q., Mithulananthan, N., Li, J., Lee, K.Y.: Multivariate ensemble forecast framework for demand prediction of anomalous days. IEEE Trans. Sustain. Energy 3029(c), 1–9 (2018). https://doi.org/10.1109/TSTE.2018.2883393 |
es_ES |
dc.description.references |
Serrano-Guerrero, X., Escrivá-Escrivá, G., Roldán-Blay, C.: Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy Build. 164, 99–108 (2018). https://doi.org/10.1016/j.enbuild.2017.12.059 |
es_ES |
dc.description.references |
Serrano-Guerrero, X., Prieto-Galarza, R., Huilcatanda, E., Cabrera-Zeas, J., Escriva-Escriva, G.: Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks. In: 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), ROPEC 2017, January 2018, pp. 1–5 (2018). https://doi.org/10.1109/ROPEC.2017.8261630 |
es_ES |
dc.description.references |
Tao, S., Li, Y., Xiao, X., Yao, L.: Load forecasting based on short-term correlation clustering. In: 2017 IEEE Innovative Smart Grid Technologies - Asia, pp. 1–7. IEEE (2017). https://doi.org/10.1109/ISGT-Asia.2017.8378416 |
es_ES |
dc.description.references |
Vartanian, C., Bauer, R., Casey, L., Loutan, C., Narang, D., Patel, V.: Ensuring system reliability: distributed energy resources and bulk power system considerations. IEEE Power Energy Mag. 16(6), 52–63 (2018). https://doi.org/10.1109/MPE.2018.2863059 |
es_ES |
dc.description.references |
Ye, X.Z., Ji, T.Y., Li, M.S., Wu, Q.H.: A morphological filter-based local prediction method with multi-variable inputs for short-term load forecast. In: 2017 IEEE Innovative Smart Grid Technologies - Asia (2017). https://doi.org/10.1109/ISGT-Asia.2017.8378323 |
es_ES |