- -

Smart Data Analysis for Smart Water Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smart Data Analysis for Smart Water Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrera Fernández, Antonio Manuel es_ES
dc.contributor.author Ayala Cabrera, David es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Montalvo Arango, Idel es_ES
dc.date.accessioned 2022-01-19T09:17:17Z
dc.date.available 2022-01-19T09:17:17Z
dc.date.issued 2017-07-05 es_ES
dc.identifier.isbn 978-84-947311-0-5 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179917
dc.description.abstract [EN] Water is an indispensable resource for human and economical welfare, and modern society depends on complex, interconnected infrastructures to provide safe water to consumers. Given this complexity, efficient numerical techniques are needed to support optimal control and management of water distribution systems (WDSs). This document is intended to be a position paper on soft computing tools to suitably handle the huge amount of data generated by processes related to smart water applications. The paper is structured in two main parts: the first part reviews a number of state-of-the-art soft computing techniques for WDS management and gives a prospective on future research directions. The second part of the paper proposes a number of new hot topics coming up nowadays in the operation and management of smart water networks. These are Big Data, near real-time monitoring, epidemiology-based data analysis tools, uncertainty of asset states, and event-driven applications. This further research is essential to develop new algorithms to deal with the inherent volume and complexity of WDSs databases, able to exploit the information in advanced metering infrastructures as fully as possible. It also aims to contribute to water utilities decision support systems in both modelling extreme events and improving network resilience es_ES
dc.language Inglés es_ES
dc.publisher International Center for Numerical Methods in Engineering (CIMNE) es_ES
dc.relation.ispartof Congreso de Métodos Numéricos en Ingeniería (CMN 2017). Actas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Smart water networks es_ES
dc.subject Soft computing es_ES
dc.subject Data analysis es_ES
dc.subject Machine learning es_ES
dc.subject Big Data es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Smart Data Analysis for Smart Water Networks es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Herrera Fernández, AM.; Ayala Cabrera, D.; Izquierdo Sebastián, J.; Montalvo Arango, I. (2017). Smart Data Analysis for Smart Water Networks. International Center for Numerical Methods in Engineering (CIMNE). 1665-1677. http://hdl.handle.net/10251/179917 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Congreso de Métodos Numéricos en Ingeniería (CMN 2017) es_ES
dc.relation.conferencedate Julio 03-05,2017 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://congress.cimne.com/cmn2017/frontal/default.asp es_ES
dc.description.upvformatpinicio 1665 es_ES
dc.description.upvformatpfin 1677 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\340848 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem