Mostrar el registro sencillo del ítem
dc.contributor.author | Jimenez, Noe | es_ES |
dc.contributor.author | Groby, Jean-Philippe | es_ES |
dc.contributor.author | Romero-García, Vicent | es_ES |
dc.date.accessioned | 2022-01-20T19:30:44Z | |
dc.date.available | 2022-01-20T19:30:44Z | |
dc.date.issued | 2021-05-13 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180041 | |
dc.description.abstract | [EN] In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral symmetry present broadband unusual properties in the far-field. These metasurfaces are designed to encode the holographic field of an acoustical vortex, resulting in structures with spiral geometry. In the near field, phase dislocations with tuned topological charge emerge when the scattered waves interference destructively along the axis of the spiral metasurface. In the far field, metasurfaces based on holographic vortices inhibit specular reflections because all scattered waves also interfere destructively in the normal direction. In addition, the scattering function in the far field is unusually uniform because the reflected waves diverge spherically from the holographic focal point. In this way, by triggering vorticity, energy can be evenly reflected in all directions except to the normal. As a consequence, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98 in experiments) and a mean normalized diffusion coefficient of 0.73 (0.76 in experiments) over a 4 octave frequency band. The singular features of the resulting metasurfaces with chiral geometry allow the simultaneous generation of broadband, diffuse and non-specular scattering. These three exceptional features make spiral metasurfaces extraordinary candidates for controlling acoustic scattering and generating diffuse sound reflections in several applications and branches of wave physics as underwater acoustics, biomedical ultrasound, particle manipulation devices or room acoustics. | es_ES |
dc.description.sponsorship | We acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities through Grant "Juan de la Cierva-Incorporacion" (IJC2018-037897-I) and PID2019-111436RB-C22, and by the Agencia Valenciana de la Innovacio through grants INNVAL10/19/016. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). JPG and VRG gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sound diffusers | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Vortices | es_ES |
dc.subject | Scattering | es_ES |
dc.subject | Acoustics | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Spiral sound-diffusing metasurfaces based on holographic vortices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-021-89487-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA15125/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F022//EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNVA1%2F2020%2F92//DISPOSITIVO DE IMAGEN ELASTOGRAFICA CUANTITATIVA EMPLEANDO VORTICES ACUSTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Jimenez, N.; Groby, J.; Romero-García, V. (2021). Spiral sound-diffusing metasurfaces based on holographic vortices. Scientific Reports. 11(1):10217-01-10217-13. https://doi.org/10.1038/s41598-021-89487-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-021-89487-8 | es_ES |
dc.description.upvformatpinicio | 10217-01 | es_ES |
dc.description.upvformatpfin | 10217-13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33986336 | es_ES |
dc.identifier.pmcid | PMC8119454 | es_ES |
dc.relation.pasarela | S\438228 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | AGENCIA VALENCIANA DE LA INNOVACION | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016). | es_ES |
dc.description.references | Ma, G. & Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016). | es_ES |
dc.description.references | Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018). | es_ES |
dc.description.references | Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9, 1–9 (2018). | es_ES |
dc.description.references | Xie, Y. et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 1–5 (2014). | es_ES |
dc.description.references | Li, J., Shen, C., Díaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1–9 (2018). | es_ES |
dc.description.references | Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013). | es_ES |
dc.description.references | Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011). | es_ES |
dc.description.references | Li, Y. et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014). | es_ES |
dc.description.references | Zhu, X. et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat. Commun. 7, 1–7 (2016). | es_ES |
dc.description.references | Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011). | es_ES |
dc.description.references | Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016). | es_ES |
dc.description.references | Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109, 121902 (2016). | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7, 13595 (2017). | es_ES |
dc.description.references | Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673–680 (2017). | es_ES |
dc.description.references | Schröder, M. R. Diffuse sound reflection by maximum-length sequences. J. Acoust. Soc. Am. 57, 149–150 (1975). | es_ES |
dc.description.references | Cox, T. J. & D’antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application (CRC Press, 2009). | es_ES |
dc.description.references | D’antonio, P. Planar binary amplitude diffusor (1998). US Patent 5,817,992. | es_ES |
dc.description.references | Cox, T. J., Angus, J. A. & D’Antonio, P. Ternary and quadriphase sequence diffusers. J. Acoust. Soc. Am. 119, 310–319 (2006). | es_ES |
dc.description.references | Zhu, Y., Fan, X., Liang, B., Cheng, J. & Jing, Y. Ultrathin acoustic metasurface-based schroeder diffuser. Phys. Rev. X 7, 021034 (2017). | es_ES |
dc.description.references | Jiménez, N., Cox, T. J., Romero-García, V. & Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers. Sci. Rep. 7, 5389 (2017). | es_ES |
dc.description.references | Ballestero, E. et al. Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers. Appl. Phys. Lett. 115, 081901 (2019). | es_ES |
dc.description.references | Nye, J. & Berry, M. Dislocations in wave trains. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 336, 165–190 (The Royal Society, 1974). | es_ES |
dc.description.references | Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008). | es_ES |
dc.description.references | Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational doppler shift. New J. Phys. 10, 013018 (2008). | es_ES |
dc.description.references | Anhäuser, A., Wunenburger, R. & Brasselet, E. Acoustic rotational manipulation using orbital angular momentum transfer. Phys. Rev. Lett. 109, 034301 (2012). | es_ES |
dc.description.references | Demore, C. E. et al. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams. Phys. Rev. Lett. 108, 194301 (2012). | es_ES |
dc.description.references | Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015). | es_ES |
dc.description.references | Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991). | es_ES |
dc.description.references | Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E 84, 065601 (2011). | es_ES |
dc.description.references | Courtney, C. R. et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014). | es_ES |
dc.description.references | Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016). | es_ES |
dc.description.references | Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018). | es_ES |
dc.description.references | Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. 114, 7250–7253 (2017). | es_ES |
dc.description.references | Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 106, 3313–3316 (1999). | es_ES |
dc.description.references | Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 91, 244302 (2003). | es_ES |
dc.description.references | Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1651–1657 (2011). | es_ES |
dc.description.references | Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016). | es_ES |
dc.description.references | Ye, L. et al. Making sound vortices by metasurfaces. AIP Adv. 6, 085007 (2016). | es_ES |
dc.description.references | Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl. Phys. Lett. 108, 223503 (2016). | es_ES |
dc.description.references | Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Phys. Rev. B 95, 024312 (2017). | es_ES |
dc.description.references | Marzo, A. et al. Realization of compact tractor beams using acoustic delay-lines. Appl. Phys. Lett. 110, 014102 (2017). | es_ES |
dc.description.references | Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016). | es_ES |
dc.description.references | Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Generating bessel beams with broad depth-of-field by using phase-only acoustic holograms. Sci. Rep. 9, 1–13 (2019). | es_ES |
dc.description.references | Jiménez-Gambín, S., Jiménez, N. & Camarena, F. Transcranial focusing of ultrasonic vortices by acoustic holograms. Phys. Rev. Appl. 14, 054070 (2020). | es_ES |
dc.description.references | Jiménez, N. et al. Formation of high-order acoustic bessel beams by spiral diffraction gratings. Phys. Rev. E 94, 053004 (2016). | es_ES |
dc.description.references | Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 109, 123506 (2016). | es_ES |
dc.description.references | Jiang, X. et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett. 108, 203501 (2016). | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101 (2018). | es_ES |
dc.description.references | Lu, J.-Y., Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound Med. Biol. 20, 403–428 (1994). | es_ES |
dc.description.references | Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991). | es_ES |
dc.description.references | ISO 17497-2:2012. Acoustics-Sound-Scattering Properties of Surfaces–Part 2: Measurement of the directional diffusion coefficient in a free field. International Organization for Standardization, Geneva, Switzerland, 2012. | es_ES |