- -

Spiral sound-diffusing metasurfaces based on holographic vortices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spiral sound-diffusing metasurfaces based on holographic vortices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Groby, Jean-Philippe es_ES
dc.contributor.author Romero-García, Vicent es_ES
dc.date.accessioned 2022-01-20T19:30:44Z
dc.date.available 2022-01-20T19:30:44Z
dc.date.issued 2021-05-13 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180041
dc.description.abstract [EN] In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral symmetry present broadband unusual properties in the far-field. These metasurfaces are designed to encode the holographic field of an acoustical vortex, resulting in structures with spiral geometry. In the near field, phase dislocations with tuned topological charge emerge when the scattered waves interference destructively along the axis of the spiral metasurface. In the far field, metasurfaces based on holographic vortices inhibit specular reflections because all scattered waves also interfere destructively in the normal direction. In addition, the scattering function in the far field is unusually uniform because the reflected waves diverge spherically from the holographic focal point. In this way, by triggering vorticity, energy can be evenly reflected in all directions except to the normal. As a consequence, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98 in experiments) and a mean normalized diffusion coefficient of 0.73 (0.76 in experiments) over a 4 octave frequency band. The singular features of the resulting metasurfaces with chiral geometry allow the simultaneous generation of broadband, diffuse and non-specular scattering. These three exceptional features make spiral metasurfaces extraordinary candidates for controlling acoustic scattering and generating diffuse sound reflections in several applications and branches of wave physics as underwater acoustics, biomedical ultrasound, particle manipulation devices or room acoustics. es_ES
dc.description.sponsorship We acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities through Grant "Juan de la Cierva-Incorporacion" (IJC2018-037897-I) and PID2019-111436RB-C22, and by the Agencia Valenciana de la Innovacio through grants INNVAL10/19/016. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). JPG and VRG gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sound diffusers es_ES
dc.subject Metamaterials es_ES
dc.subject Vortices es_ES
dc.subject Scattering es_ES
dc.subject Acoustics es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Spiral sound-diffusing metasurfaces based on holographic vortices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-021-89487-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F022//EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNVA1%2F2020%2F92//DISPOSITIVO DE IMAGEN ELASTOGRAFICA CUANTITATIVA EMPLEANDO VORTICES ACUSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Jimenez, N.; Groby, J.; Romero-García, V. (2021). Spiral sound-diffusing metasurfaces based on holographic vortices. Scientific Reports. 11(1):10217-01-10217-13. https://doi.org/10.1038/s41598-021-89487-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-021-89487-8 es_ES
dc.description.upvformatpinicio 10217-01 es_ES
dc.description.upvformatpfin 10217-13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33986336 es_ES
dc.identifier.pmcid PMC8119454 es_ES
dc.relation.pasarela S\438228 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder AGENCIA VALENCIANA DE LA INNOVACION es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016). es_ES
dc.description.references Ma, G. & Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016). es_ES
dc.description.references Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018). es_ES
dc.description.references Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9, 1–9 (2018). es_ES
dc.description.references Xie, Y. et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 1–5 (2014). es_ES
dc.description.references Li, J., Shen, C., Díaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1–9 (2018). es_ES
dc.description.references Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013). es_ES
dc.description.references Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011). es_ES
dc.description.references Li, Y. et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014). es_ES
dc.description.references Zhu, X. et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat. Commun. 7, 1–7 (2016). es_ES
dc.description.references Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011). es_ES
dc.description.references Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016). es_ES
dc.description.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109, 121902 (2016). es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7, 13595 (2017). es_ES
dc.description.references Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673–680 (2017). es_ES
dc.description.references Schröder, M. R. Diffuse sound reflection by maximum-length sequences. J. Acoust. Soc. Am. 57, 149–150 (1975). es_ES
dc.description.references Cox, T. J. & D’antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application (CRC Press, 2009). es_ES
dc.description.references D’antonio, P. Planar binary amplitude diffusor (1998). US Patent 5,817,992. es_ES
dc.description.references Cox, T. J., Angus, J. A. & D’Antonio, P. Ternary and quadriphase sequence diffusers. J. Acoust. Soc. Am. 119, 310–319 (2006). es_ES
dc.description.references Zhu, Y., Fan, X., Liang, B., Cheng, J. & Jing, Y. Ultrathin acoustic metasurface-based schroeder diffuser. Phys. Rev. X 7, 021034 (2017). es_ES
dc.description.references Jiménez, N., Cox, T. J., Romero-García, V. & Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers. Sci. Rep. 7, 5389 (2017). es_ES
dc.description.references Ballestero, E. et al. Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers. Appl. Phys. Lett. 115, 081901 (2019). es_ES
dc.description.references Nye, J. & Berry, M. Dislocations in wave trains. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 336, 165–190 (The Royal Society, 1974). es_ES
dc.description.references Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008). es_ES
dc.description.references Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational doppler shift. New J. Phys. 10, 013018 (2008). es_ES
dc.description.references Anhäuser, A., Wunenburger, R. & Brasselet, E. Acoustic rotational manipulation using orbital angular momentum transfer. Phys. Rev. Lett. 109, 034301 (2012). es_ES
dc.description.references Demore, C. E. et al. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams. Phys. Rev. Lett. 108, 194301 (2012). es_ES
dc.description.references Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015). es_ES
dc.description.references Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991). es_ES
dc.description.references Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E 84, 065601 (2011). es_ES
dc.description.references Courtney, C. R. et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014). es_ES
dc.description.references Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016). es_ES
dc.description.references Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018). es_ES
dc.description.references Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. 114, 7250–7253 (2017). es_ES
dc.description.references Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 106, 3313–3316 (1999). es_ES
dc.description.references Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 91, 244302 (2003). es_ES
dc.description.references Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1651–1657 (2011). es_ES
dc.description.references Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016). es_ES
dc.description.references Ye, L. et al. Making sound vortices by metasurfaces. AIP Adv. 6, 085007 (2016). es_ES
dc.description.references Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl. Phys. Lett. 108, 223503 (2016). es_ES
dc.description.references Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Phys. Rev. B 95, 024312 (2017). es_ES
dc.description.references Marzo, A. et al. Realization of compact tractor beams using acoustic delay-lines. Appl. Phys. Lett. 110, 014102 (2017). es_ES
dc.description.references Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016). es_ES
dc.description.references Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Generating bessel beams with broad depth-of-field by using phase-only acoustic holograms. Sci. Rep. 9, 1–13 (2019). es_ES
dc.description.references Jiménez-Gambín, S., Jiménez, N. & Camarena, F. Transcranial focusing of ultrasonic vortices by acoustic holograms. Phys. Rev. Appl. 14, 054070 (2020). es_ES
dc.description.references Jiménez, N. et al. Formation of high-order acoustic bessel beams by spiral diffraction gratings. Phys. Rev. E 94, 053004 (2016). es_ES
dc.description.references Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 109, 123506 (2016). es_ES
dc.description.references Jiang, X. et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett. 108, 203501 (2016). es_ES
dc.description.references Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101 (2018). es_ES
dc.description.references Lu, J.-Y., Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound Med. Biol. 20, 403–428 (1994). es_ES
dc.description.references Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991). es_ES
dc.description.references ISO 17497-2:2012. Acoustics-Sound-Scattering Properties of Surfaces–Part 2: Measurement of the directional diffusion coefficient in a free field. International Organization for Standardization, Geneva, Switzerland, 2012. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem