- -

Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Yu es_ES
dc.contributor.author Martínez-García, Miguel es_ES
dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Latimer, Anthony es_ES
dc.date.accessioned 2022-01-21T08:26:42Z
dc.date.available 2022-01-21T08:26:42Z
dc.date.issued 2019-07-05 es_ES
dc.identifier.isbn 9781728100654 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180058
dc.description.abstract [EN] This paper aims to build a fuzzy system by means of genetic programming, which is used to extract the relevant function for each rule consequent through symbolic regression. The employed TSK fuzzy system is complemented with a variational Bayesian Gaussian mixture clustering method, which identifies the domain partition, simultaneously specifying the number of rules as well as the parameters in the fuzzy sets. The genetic programming approach is accompanied with an orthogonal least square algorithm, to extract robust rule consequent functions for the fuzzy system. The proposed model is validated with a synthetic surface, and then with real data from a gas turbine compressor map case, which is compared with an adaptive neuro-fuzzy inference system model. The results have demonstrated the efficacy of the proposed approach for modelling system with small data or bifurcating dynamics, where the analytical equations are not available, such as those in a typical industrial setting. es_ES
dc.description.sponsorship Research supported by EPSRC Grant EVES (EP/R029741/1). es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM 2019). Proceedings es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/ICARM.2019.8834163 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//EP%2FR029741%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Zhang, Y.; Martínez-García, M.; Serrano, J.; Latimer, A. (2019). Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System. IEEE. 987-992. https://doi.org/10.1109/ICARM.2019.8834163 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename IEEE International Conference on Advanced Robotics and Mechatronics 2019 (ICARM 2019) es_ES
dc.relation.conferencedate Julio 03-05,2019 es_ES
dc.relation.conferenceplace Osaka, Japan es_ES
dc.relation.publisherversion https://doi.org/10.1109/ICARM.2019.8834163 es_ES
dc.description.upvformatpinicio 987 es_ES
dc.description.upvformatpfin 992 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\408283 es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem