Mostrar el registro sencillo del ítem
dc.contributor.author | Risco, Sebastián | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.date.accessioned | 2022-01-21T19:03:37Z | |
dc.date.available | 2022-01-21T19:03:37Z | |
dc.date.issued | 2021-02-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180089 | |
dc.description.abstract | [EN] Serverless computing has introduced scalable event-driven processing in Cloud infrastructures. However, it is not trivial for multimedia processing to benefit from the elastic capabilities featured by serverless applications. To this aim, this paper introduces the evolution of a framework to support the execution of customized runtime environments in AWS Lambda in order to accommodate workloads that do not satisfy its strict computational requirements: increased execution times and the ability to use GPU-based resources. This has been achieved through the integration of AWS Batch, a managed service to deploy virtual elastic clusters for the execution of containerized jobs. In addition, a Functions Definition Language (FDL) is introduced for the description of data-driven workflows of functions. These workflows can simultaneously leverage both AWS Lambda for the highly-scalable execution of short jobs and AWS Batch, for the execution of compute-intensive jobs that can profit from GPU-based computing. To assess the developed open-source framework, we executed a case study for efficient serverless video processing. The workflow automatically generates subtitles based on the audio and applies GPU-based object recognition to the video frames, thus simultaneously harnessing different computing services. This allows for the creation of cost-effective highly-parallel scale-to-zero serverless workflows in AWS. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish "Ministerio de Economia, Industria y Competitividad" for the project "BigCLOE" with reference number TIN2016-79951-R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Serverless computing | es_ES |
dc.subject | Multimedia processing | es_ES |
dc.subject | Workflows | es_ES |
dc.subject | Batch processing | es_ES |
dc.subject | Containers | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | GPU-Enabled Serverless Workflows for Efficient Multimedia Processing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app11041438 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TIN2016-79951-R//COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Risco, S.; Moltó, G. (2021). GPU-Enabled Serverless Workflows for Efficient Multimedia Processing. Applied Sciences. 11(4):1-17. https://doi.org/10.3390/app11041438 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app11041438 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\428994 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
upv.costeAPC | 1100 | es_ES |