- -

GPU-Enabled Serverless Workflows for Efficient Multimedia Processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

GPU-Enabled Serverless Workflows for Efficient Multimedia Processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Risco, Sebastián es_ES
dc.contributor.author Moltó, Germán es_ES
dc.date.accessioned 2022-01-21T19:03:37Z
dc.date.available 2022-01-21T19:03:37Z
dc.date.issued 2021-02-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180089
dc.description.abstract [EN] Serverless computing has introduced scalable event-driven processing in Cloud infrastructures. However, it is not trivial for multimedia processing to benefit from the elastic capabilities featured by serverless applications. To this aim, this paper introduces the evolution of a framework to support the execution of customized runtime environments in AWS Lambda in order to accommodate workloads that do not satisfy its strict computational requirements: increased execution times and the ability to use GPU-based resources. This has been achieved through the integration of AWS Batch, a managed service to deploy virtual elastic clusters for the execution of containerized jobs. In addition, a Functions Definition Language (FDL) is introduced for the description of data-driven workflows of functions. These workflows can simultaneously leverage both AWS Lambda for the highly-scalable execution of short jobs and AWS Batch, for the execution of compute-intensive jobs that can profit from GPU-based computing. To assess the developed open-source framework, we executed a case study for efficient serverless video processing. The workflow automatically generates subtitles based on the audio and applies GPU-based object recognition to the video frames, thus simultaneously harnessing different computing services. This allows for the creation of cost-effective highly-parallel scale-to-zero serverless workflows in AWS. es_ES
dc.description.sponsorship This research was funded by the Spanish "Ministerio de Economia, Industria y Competitividad" for the project "BigCLOE" with reference number TIN2016-79951-R es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cloud computing es_ES
dc.subject Serverless computing es_ES
dc.subject Multimedia processing es_ES
dc.subject Workflows es_ES
dc.subject Batch processing es_ES
dc.subject Containers es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title GPU-Enabled Serverless Workflows for Efficient Multimedia Processing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app11041438 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TIN2016-79951-R//COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Risco, S.; Moltó, G. (2021). GPU-Enabled Serverless Workflows for Efficient Multimedia Processing. Applied Sciences. 11(4):1-17. https://doi.org/10.3390/app11041438 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app11041438 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\428994 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
upv.costeAPC 1100 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem