- -

Análisis y desarrollo de algoritmos de altas prestaciones para reconstrucción de imagen médica TAC 3D basados en la reducción de dosis.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis y desarrollo de algoritmos de altas prestaciones para reconstrucción de imagen médica TAC 3D basados en la reducción de dosis.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Verdú Martín, Gumersindo Jesús es_ES
dc.contributor.advisor Vidal Gimeno, Vicente Emilio es_ES
dc.contributor.author Chillarón Pérez, Mónica es_ES
dc.date.accessioned 2022-01-24T09:41:52Z
dc.date.available 2022-01-24T09:41:52Z
dc.date.created 2021-12-20
dc.date.issued 2022-01-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180116
dc.description Tesis por compendio es_ES
dc.description.abstract [ES] La prueba médica de Tomografía Computarizada (TC) es esencial actualmente en la práctica clínica para el diagnóstico y seguimiento de múltiples enfermedades y lesiones, siendo una de las pruebas de imagen médica más importante por la gran cantidad de información que es capaz de aportar. Sin embargo, a diferencia de otros métodos de diagnóstico por imagen que son inocuos, la prueba de TC utiliza rayos X, que son ionizantes, por lo que suponen un riesgo para los pacientes. Es por ello que es necesario desarrollar métodos que permitan reducir la dosis de radiación a la que se expone a los pacientes que se realizan un estudio, sin comprometer la calidad de imagen puesto que sino se estaría sometiendo a un riesgo a estas personas sin que un diagnóstico de calidad esté garantizado. Durante el desarrollo de esta tesis se han investigado métodos de reconstrucción de imagen TC que se basan en reducir el número de proyecciones usadas, con el objetivo de reducir el tiempo de exposición a los rayos X. Esta estrategia de reducción de dosis está en fase de investigación, a diferencia de otras que están implantadas en la práctica clínica y ya han sido desarrolladas por los propios fabricantes de los escáneres. Por tanto, nos hemos centrado en los llamados métodos algebraicos de reconstrucción, que son los más apropiados para este tipo de adquisición de proyecciones puesto que son capaces de trabajar con menos información que los métodos clásicos conservando una buena calidad de imagen. En concreto, se ha estudiado a fondo el comportamiento del método LSQR para la resolución de este problema, combinado con una técnica de filtrado llamada Soft Thresholding Filter y una técnica de aceleración llamada FISTA. Además, se ha introducido el filtro de imagen Bilateral que es capaz de mejorar la calidad de las imágenes cuando se combina con los métodos anteriores. El estudio multiparamétrico realizado se ha llevado a cabo en un entorno de computación distribuida Grid, para analizar cómo los distintos parámetros que intervienen en el proceso de reconstrucción pueden influir sobre la imagen resultado. Dicho estudio se ha diseñado para hacer uso de la potencia de cómputo de la plataforma distribuida aunque el software que se necesita no esté disponible. La instalación de dicho software se puede realizar en el tiempo de ejecución de los trabajos, o en se puede empaquetar en una imagen que estará instalada en un contenedor Docker, lo que es una opción muy interesante para sistemas donde no tengamos privilegios. El esquema seguido para la creación y lanzamiento de los trabajos es fácilmente reproducible. Por otra parte, se han planteado dos métodos algebraicos directos para la reconstrucción de TC basados en la factorización de la matriz que modela el sistema. El primero es el método SVD, que se ha probado mediante la librería SLEPc, obteniendo mayores tasas de uso de memoria principal, por lo que ha sido descartado en favor del método QR. La primera aproximación a la resolución se ha hecho mediante la librería SuiteSparseQR, desarrollando después un método propio siguiendo la técnica Out-Of-Core que permite almacenar las matrices en el propio disco duro en lugar de cargarlas en memoria, por lo que el tamaño del problema puede aumentar sin que el coste del hardware sea muy alto. Dicho método obtiene reconstrucciones de alta calidad cuando el rango de la matriz factorizada es completo. En los resultados se muestra como para una resolución alta, garantizar el rango completo todavía supone una reducción del número de proyecciones con respecto a métodos tradicionales. Por tanto, en esta tesis se ha llevado a cabo la investigación y el posterior desarrollo mediante librerías y técnicas de computación de Altas Prestaciones de varios métodos algebraicos de reconstrucción de TC basados en la reducción de proyecciones que permiten mantener una buena calidad de imagen. Dichos métodos han sido optimizados para lograr los menores tiempos de reconstrucción posibles, con el fin de hacerlos competitivos y que algún día puedan ser instaurados en la práctica clínica. es_ES
dc.description.abstract [CA] Actualment, la prova mèdica de tomografia computeritzada (TC) és essencial en la pràctica clínica per al diagnòstic i el seguiment de múltiples malalties i lesions, sent una de les proves d'imatge mèdica més importants a causa de la gran quantitat d'informació que és capaç d'oferir. Tanmateix, a diferència d'altres mètodes d'imatge médica, la prova CT utilitza raigs X, que són ionitzants i suposen un risc per als pacients. Per això, és necessari desenvolupar mètodes que permetin reduir la dosi de radiació a la qual estan exposats els pacients sotmesos a un estudi, sense comprometre la qualitat de la imatge, ja que en cas contrari estarien sotmetent a aquestes persones a un risc sense que es garantís l'avantatge d'un diagnòstic d'alta qualitat. Durant el desenvolupament d'aquesta tesi, s'han investigat diversos mètodes de reconstrucció d'imatges CT basats en la reducció del nombre de projeccions utilitzades, amb l'objectiu de reduir el temps d'exposició als raigs X. Aquesta estratègia de reducció de dosis es troba en fase investigació, a diferència d'altres que s'implementen a la pràctica clínica i que ja han estat desenvolupades pels propis fabricants d'escàners. Per tant, ens hem centrat en els anomenats mètodes de reconstrucció algebraica, que són els més adequats per a aquest tipus d'adquisició de projecció, ja que són capaços de treballar amb menys informació que els mètodes clàssics mantenint una bona qualitat d'imatge. Concretament, s'ha estudiat a fons el comportament del mètode LSQR per resoldre aquest problema, combinat amb una tècnica de filtratge anomenada Soft Thresholding Filter i una tècnica d'acceleració anomenada FISTA. A més, s'ha introduït un filtre d'imatges anomenat filtre bilateral, que és capaç de millorar la qualitat de les imatges quan es combina amb els mètodes anteriors. L'estudi multiparamètric de LSQR es va dur a terme en un entorn informàtic distribuït Grid, per analitzar com els diferents paràmetres implicats en el procés de reconstrucció poden influir en la imatge resultant. Aquest estudi ha estat dissenyat per fer ús de la potència de càlcul de la plataforma distribuïda encara que el programari requerit no estigui disponible. La instal·lació d'aquest programari es pot fer en el moment d'executar els treballs o es pot empaquetar en una imatge que s'instal·larà en un contenidor Docker, que és una opció molt interessant per a sistemes on no tenim privilegis. L'esquema seguit per a la creació i el llançament dels treballs es pot reproduir fàcilment per a estudis multiparamètrics d'aquest tipus. D'altra banda, s'han proposat dos mètodes algebraics directes per a la reconstrucció CT basats en la factorització de la matriu que modela el sistema. El primer és el mètode SVD, que s'ha provat mitjançant la biblioteca SLEPc, obtenint taxes d'ús més alt de memòria principal, motiu pel qual s'ha descartat a favor del mètode QR. La primera aproximació a la resolució s'ha fet a través de la biblioteca SuiteSparseQR, desenvolupant posteriorment la nostra pròpia implementació mitjançant la tècnica Out-Of-Core que permet emmagatzemar les matrius al disc dur en lloc de carregar-les a la memòria, de manera que la mida de el problema pot augmentar sense que el cost del maquinari sigui molt alt. Aquest mètode obté reconstruccions d'alta qualitat quan el rang de la matriu factoritzada és complet. En els resultats es demostra que per a una alta resolució, garantir el rang complet encara significa una reducció del nombre de projeccions en comparació amb els mètodes tradicionals. Per tant, en aquesta tesi s'ha dut a terme la investigació i el desenvolupament posterior de diversos mètodes de reconstrucció algebraica de CT mitjançant biblioteques i tècniques de computació d'altes prestacions. Aquests mètodes basats en la reducció de projeccions, que permeten mantenir una bona qualitat d’imatge, s’han optimitzat per aconseguir els temps de reconstrucció més breus possibles, per tal de fer-los competitius perquè algun dia puguin implementarse a la pràctica clínica. es_ES
dc.description.abstract [EN] The Computerized Tomography (CT) medical test is currently essential in clinical practice for the diagnosis and monitoring of multiple diseases and injuries, being one of the most important medical imaging tests due to the large amount of information it is capable of providing. However, unlike other safe imaging methods, the CT test uses X-rays, which are ionizing, posing a risk to patients. That is why it is necessary to develop methods that allow reducing the radiation dose to which patients undergoing a study are exposed, without compromising image quality since otherwise they would be subjecting these people to a risk without the benefit of a high-quality diagnosis being guaranteed. During the development of this thesis, several CT image reconstruction methods that are based on reducing the number of projections used have been investigated, with the aim of reducing the time of exposure to X-rays. This dose reduction strategy is in research phase, unlike others that are implemented in clinical practice and have already been developed by the scanner manufacturers themselves. Therefore, we have focused on the algebraic reconstruction methods, which are the most appropriate for this type of projection acquisition since they are capable of working with less information than the classical methods while maintaining good image quality. Specifically, the behavior of the LSQR method to solve this problem has been thoroughly studied, combined with a filtering technique called Soft Thresholding Filter and an acceleration technique called FISTA. In addition, the so-called Bilateral filter has been introduced, which is capable of improving the quality of images when combined with the above methods. The multiparametric LSQR study was carried out in a Grid distributed computing environment, to analyze how the different parameters involved in the reconstruction process can influence the resulting image. This study has been designed to make use of the computing power of the distributed platform even if the software required is not available. The installation of said software can be done at the time of execution of the jobs, or it can be packaged in an image that will be installed in a Docker container, which is a very interesting option for systems where we do not have privileges. The scheme followed for the creation and launch of the jobs is easily reproducible for multiparametric studies of this type. On the other hand, two direct algebraic methods have been proposed for CT reconstruction based on the factorization of the matrix that models the system. The first is the SVD method, which has been tested using the SLEPc library, obtaining higher rates of main memory usage, which is why it has been discarded in favor of the QR method. The first approximation to the resolution has been made through the SuiteSparseQR library, later developing our own implementation using the Out-Of-Core technique that allows the matrices to be stored on the hard drive itself instead of loading them in memory, so the size of the problem can increase without the cost of the hardware being very high. This method obtains high-quality reconstructions when the rank of the factored matrix is complete. In the results it is shown that for a high resolution, guaranteeing the full rank still means a reduction in the number of projections compared to traditional methods. Therefore, in this thesis, research and subsequent development of several algebraic CT reconstruction methods has been carried out using libraries and High Performance Computing techniques. These methods based on the reduction of projections, which allows maintaining good image quality, and have been optimized to achieve the shortest possible reconstruction times, in order to make them competitive so that one day they can be implemented in clinical practice. es_ES
dc.description.sponsorship This research has been supported by Universitat Politècnica de València and partially funded by TIN2015-66972-C5-4-R, ENE2014-59442-P-AR and TIN2013-44390-R projects of the "Ministerio de Economía y Competitividad" of Spain, as well as the Spanish ”Generalitat Valenciana” PROMETEOII/2014/008, PROMETEO/2018/035 projects and ACIF/2017/075 predoctoral grant. This work has also been co-financed by FEDER and FSE funds, and the “Spanish Ministry of Science, Innovation and Universities” under Grant RTI2018-098156-B-C54 es_ES
dc.format.extent 208 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Projection Reduction es_ES
dc.subject Dose reduction es_ES
dc.subject Algebraic Methods es_ES
dc.subject Computed Tomography es_ES
dc.subject Reconstruction es_ES
dc.subject Medical Imaging es_ES
dc.subject Imagen Médica es_ES
dc.subject Reconstrucción es_ES
dc.subject Tomografía Computarizada es_ES
dc.subject Métodos Algebraicos es_ES
dc.subject Reducción de dosis es_ES
dc.subject Reducción de Proyecciones es_ES
dc.subject QR es_ES
dc.subject Least Square QR (LSQR) es_ES
dc.subject Sparse QR (SPQR) es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Análisis y desarrollo de algoritmos de altas prestaciones para reconstrucción de imagen médica TAC 3D basados en la reducción de dosis. es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/180116 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2014%2F008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F035//BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075/ES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-44390-R/ES/CLUSTERS VIRTUALES ELASTICOS Y MIGRABLES SOBRE INFRAESTRUCTURAS CLOUD HIBRIDAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-4-R/ES/TECNICAS PARA LA MEJORA DE LAS APLICACIONES MULTIMEDIA Y COMPUTACION MATRICIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Chillarón Pérez, M. (2021). Análisis y desarrollo de algoritmos de altas prestaciones para reconstrucción de imagen médica TAC 3D basados en la reducción de dosis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180116 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\12080 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem