Mostrar el registro sencillo del ítem
dc.contributor.author | Belletti, Rebecca | es_ES |
dc.contributor.author | Romero Pérez, Lucia | es_ES |
dc.contributor.author | Martínez-Mateu, Laura | es_ES |
dc.contributor.author | Cherry, Elizabeth M. | es_ES |
dc.contributor.author | Fenton, Flavio H. | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.date.accessioned | 2022-01-24T19:29:50Z | |
dc.date.available | 2022-01-24T19:29:50Z | |
dc.date.issued | 2021-05-31 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180143 | |
dc.description.abstract | [EN] Genetic mutations in genes encoding for potassium channel protein structures have been recently associated with episodes of atrial fibrillation in asymptomatic patients. The aim of this study is to investigate the potential arrhythmogenicity of three gain-of-function mutations related to atrial fibrillation¿namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M¿using modeling and simulation of the electrophysiological activity of the heart. A genetic algorithm was used to tune the parameters¿ value of the original ionic currents to reproduce the alterations experimentally observed caused by the mutations. The effects on action potentials, ionic currents, and restitution properties were analyzed using versions of the Courtemanche human atrial myocyte model in different tissues: pulmonary vein, right, and left atrium. Atrial susceptibility of the tissues to spiral wave generation was also investigated studying the temporal vulnerability. The presence of the three mutations resulted in an overall more arrhythmogenic substrate. Higher current density, action potential duration shortening, and flattening of the restitution curves were the major effects of the three mutations at the single-cell level. The genetic mutations at the tissue level induced a higher temporal vulnerability to the rotor¿s initiation and progression, by sustaining spiral waves that perpetuate until the end of the simulation. The mutation with the highest pro-arrhythmic effects, exhibiting the widest sustained VW and the smallest meandering rotor¿s tip areas, was KCNE3-V17M. Moreover, the increased susceptibility to arrhythmias and rotor¿s stability was tissue-dependent. Pulmonary vein tissues were more prone to rotor¿s initiation, while in left atrium tissues rotors were more easily sustained. Re-entries were also progressively more stable in pulmonary vein tissue, followed by the left atrium, and finally the right atrium. The presence of the genetic mutations increased the susceptibility to arrhythmias by promoting the rotor¿s initiation and maintenance. The study provides useful insights into the mechanisms underlying fibrillatory events caused by KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M and might aid the planning of patient-specific targeted therapies. | es_ES |
dc.description.sponsorship | This work was supported by the European Union's Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No. 766082 (MY-ATRIA Project) and under the Grant Agreement No. 101016496, by Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043), by the National Science Foundation under Grants CMMI-1762553 and CMMI-2011280, and by the National Institutes of Health under Grant No. 1R01HL143450-01. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Genetic mutations | es_ES |
dc.subject | In silico modeling | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Potassium channels | es_ES |
dc.subject | Channelopathy | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Arrhythmogenic Effects of Genetic Mutations Affecting Potassium Channels in Human Atrial Fibrillation: A Simulation Study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2021.681943 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101016496/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1762553/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/766082/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//2011280/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIHR//1R01HL143450-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043//MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Belletti, R.; Romero Pérez, L.; Martínez-Mateu, L.; Cherry, EM.; Fenton, FH.; Saiz Rodríguez, FJ. (2021). Arrhythmogenic Effects of Genetic Mutations Affecting Potassium Channels in Human Atrial Fibrillation: A Simulation Study. Frontiers in Physiology. 12:1-16. https://doi.org/10.3389/fphys.2021.681943 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2021.681943 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.identifier.pmid | 34135774 | es_ES |
dc.identifier.pmcid | PMC8201780 | es_ES |
dc.relation.pasarela | S\441363 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | National Institute for Health Research, Reino Unido | es_ES |
upv.costeAPC | 3570 | es_ES |