Mostrar el registro sencillo del ítem
dc.contributor.author | Banfi, Fabrizio | es_ES |
dc.contributor.author | Brumana, Raffaella | es_ES |
dc.contributor.author | Landi, Angelo Giuseppe | es_ES |
dc.contributor.author | Previtali, Mattia | es_ES |
dc.contributor.author | Roncoroni, Fabio | es_ES |
dc.contributor.author | Stanga, Chiara | es_ES |
dc.date.accessioned | 2022-01-25T10:54:09Z | |
dc.date.available | 2022-01-25T10:54:09Z | |
dc.date.issued | 2022-01-21 | |
dc.identifier.uri | http://hdl.handle.net/10251/180177 | |
dc.description.abstract | [EN] This paper describes the case study of the damaged church of St. Francesco in the hamlet of Arquata del Tronto (Italy) that was struck by the earthquake in 2016. The municipality commissioned the research to support the preliminary design of the preservation plan. The first digitisation level has been started from the richness of surveying data acquired from static and dynamic terrestrial laser scanning (TLS), and photogrammetry, overcoming challenging constraints due to the scaffolding covering the surfaces. The geometric survey allowed authors to acquire massively geometric and material information supporting the three-dimensional (3D) volume stratigraphic and the creation of the Heritage Building Information Modelling (HBIM). The paper proposes a shift from the Geographic Information System (GIS)-based analysis of the materials toward spatial HBIM management. Building Archaeology is turned into HBIM 3D volume stratigraphy, overcoming the bidimensional (2D) surface mapping, in favour of a 3D understanding of direct and indirect sources. Material mapping is added to HBIM 3D volume stratigraphy, and each stratigraphic unit (SU) has its proprieties. The 3D volume stratigraphic database has been designed to collect the data on the unit detection at three levels (direct sources data collection, indirect data documentation, the relation among the BIM object elements). A common data environment (CDE) has been set up to share the 3D volume informative models that can be accessed, and all the information gathered. The knowledge transfer using the eXtended reality (XR) has been devoted to the citizen and tourist fruition, enhancing the comprehension of difficult concepts like the SUs to support a better critical 3D reconstruction. It includes the phases of construction across time-lapse documentation that validates related information within the building archaeology informative models leaving spaces to the uncertainty and documenting the relationship established so far thanks to the direct and indirect sources. The result obtained is a live digital twin that can be continuously updated, which justifies the costs and time demanding of HBIM despite 2D drawings.Highlights: • 3D survey and scan-to-HBIM process for the creation of a digital twin were oriented to the preliminary design of the preservation plan of the church of St. Francesco in Arquata del Tronto (Italy). • Stratigraphy is investigated and oriented towards a digitisation process to share different levels of knowledge through new forms of digital-sharing such as Common Data Environment (CDE) and cloud-based BIM platform. • eXtended reality (XR) is the final tool to reach new levels of communication and a wider audience characterised by experts in the construction sector and virtual and non-expert tourists. | es_ES |
dc.description.abstract | [ES] Este artículo describe el caso de estudio de la iglesia con patologías de San Francisco en la aldea de Arquata del Tronto (Italia), que fue golpeada por el terremoto de 2016. El municipio encargó la investigación que apoyará el diseño preliminar del plan de conservación. El primer nivel de digitalización empezó a partir de la amalgama de datos topográficos adquiridos mediante escáner láser terrestre (TLS) dinámico y estático, y fotogrametría, superando los desafiantes limitaciones ocasionadas por los andamios que cubren las superficies. El levantamiento geométrico permitió a los autores capturar información geométrica y material de manera masiva que respalda el volumen estratigráfico tridimensional (3D) y la creación del modelado de información de edificios patrimoniales (HBIM). El artículo propone el cambio del análisis de los materiales basado en los sistemas de información geográfica (SIG), a la gestión espacial HBIM. La arqueología de la construcción se convierte en estratigrafía volumétrica HBIM 3D, superando el mapeado de la superficie bidimensional (2D) en favor de una comprensión 3D de las fuentes directas e indirectas. El mapeado de los materiales se añade a la estratigrafía volumétrica 3D en HBIM, y cada unidad estratigráfica (UE) tiene sus propiedades. La base de datos 3D volumétrico-estratigráfica ha sido diseñada para capturar los datos en tres niveles (recopilación de datos de fuentes directas, documentación de datos indirectos, relación entre los elementos del objeto BIM). Se ha configurado un entorno de datos común (CDE - Common Data Environment) que comparte los modelos informativo-volumétricos 3D al que se puede acceder, así como toda la información compilada. La trasmisión del conocimiento utilizando la realidad extendida (XR - eXtended Reality) se ha dedicado a la consecución ciudadana y turística, potenciando la comprensión de conceptos difíciles como son las unidades estratigráficas que apoyan una mejor reconstrucción crítica en 3D. Incluye las fases de construcción a través de la documentación temporal que valida la información relacionada dentro de los modelos informativos de la arqueología de la construcción que deja espacios a la incertidumbre y documenta la relación establecida hasta el momento gracias a las fuentes directas e indirectas. El resultado obtenido es un gemelo digital en vivo que se puede actualizar continuamente, y esto justifica los costes y el tiempo que exige el HBIM a diferencia de los dibujos 2D. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Virtual Archaeology Review | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Building archaeology | es_ES |
dc.subject | Stratigraphic unit (SU) | es_ES |
dc.subject | HBIM | es_ES |
dc.subject | Informative models | es_ES |
dc.subject | 3D volume stratigraphy | es_ES |
dc.subject | Digitisation | es_ES |
dc.subject | Arqueología de la arquitectura | es_ES |
dc.subject | Unidad estratigráfica | es_ES |
dc.subject | Modelos informativos | es_ES |
dc.subject | Estratigrafía volumétrica 3D | es_ES |
dc.subject | Digitalización | es_ES |
dc.title | Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication | es_ES |
dc.title.alternative | Modelización de la información de la arqueología de la construcción transformada en estratigrafía volumétrica 3D y comunicación de realidad extendida con intervalos de tiempo | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/var.2022.15313 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//VIGIE 2020/654/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Banfi, F.; Brumana, R.; Landi, AG.; Previtali, M.; Roncoroni, F.; Stanga, C. (2022). Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication. Virtual Archaeology Review. 13(26):1-21. https://doi.org/10.4995/var.2022.15313 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/var.2022.15313 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 26 | es_ES |
dc.identifier.eissn | 1989-9947 | |
dc.relation.pasarela | OJS\15313 | es_ES |
dc.contributor.funder | UNESCO | es_ES |
dc.description.references | Adan, A., Xiong, X., Akinci, B., & Huber, D. (2011). Automatic creation of semantically rich 3D building models from laser scanner data. Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC) (pp. 343-348). https://doi.org/10.22260/ISARC2011/0061 | es_ES |
dc.description.references | Anselmi, S. (1977). Economia e società: le Marche tra XV e XX secolo. Società editrice il Mulino Bologna. | es_ES |
dc.description.references | Altun, M., & Akcamete, A. (2019). A method for facilitating 4D modeling by automating task information generation and mapping. In I. Mutis, & T. Hartmann (Eds.), Advances in Informatics and Computing in Civil and Construction Engineering (pp. 479-486). Cham: Springer. https://doi.org/10.1007/978-3-030-00220-6_57 | es_ES |
dc.description.references | Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review, 11(23), 16-33. https://doi.org/10.4995/var.2020.12416 | es_ES |
dc.description.references | Bartolini Salimbeni, L. (1993). Architettura francescana in Abruzzo : dal 13. al 18. secolo. Saggi Di Opus. | es_ES |
dc.description.references | Boato, A., & Pittaluga, D. (2000). Building Archaeology: a non-destructive archaeology. In Proceedings of the 15th World Conference on Nondestructive Testing, Roma (Italy) (pp. 1-5). https://www.ndt.net/article/wcndt00/papers/idn365/idn365.htm | es_ES |
dc.description.references | Boato, A. (2008). L'archeologia in architettura. Misurazioni, stratigrafie, datazioni, restauro. Venice: Marsilio Editore. | es_ES |
dc.description.references | Bonelli, R. (1982). Introduzione. In R. Bonelli (Ed.), Francesco d'Assisi. Chiese e conventi (vol. 2, pp. 10). Milan: Electa. | es_ES |
dc.description.references | Brogiolo, G. P. (2002). L'Archeologia dell'architettura in Italia nell'ultimo quinquennio (1997-2001). Arqueología de la Arquitectura, 1, 19-26, https://doi.org/10.3989/arq.arqt.2002.3 | es_ES |
dc.description.references | Brogiolo, G. P., & Cagnana, A. (2012). Archeologia dell'architettura. Metodi e interpretazioni. Florence: All'Insegna del Giglio. | es_ES |
dc.description.references | Brumana, R., Stanga, C., & Banfi, F. (2021). Models and scales for quality control: toward the definition of specifications (GOA-LOG) for the generation and re-use of HBIM object libraries in a Common Data Environment. Applied Geomatics. https://doi.org/10.1007/s12518-020-00351-2 | es_ES |
dc.description.references | Brumana, R., Della Torre, S., Previtali, M., Barazzetti, L., Cantini, L., Oreni, D., & Banfi, F. (2018). Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention-the Basilica di Collemaggio (L'Aquila). Applied Geomatics, 10(4), 545-567. https://doi.org/10.1007/s12518-018-0233-3 | es_ES |
dc.description.references | Chiabrando, F., Lo Turco, M., & Rinaudo, F. (2017). Modeling the decay in an HBIM starting from 3D point clouds. A followed approach for cultural heritage knowledge. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(2W5), 605-612. https://doi.org/10.5194/isprs-archives-XLII-2-W5-605-2017 | es_ES |
dc.description.references | Ciociola, C., & Castelli, L. (2010). La Sindone di Arquata del Tronto tra storia e leggenda. Ascoli Piceno: FAS editore. | es_ES |
dc.description.references | Cogima, C. K., Paiva, P. V. V., Dezen-Kempter, E., Carvalho, M. A. G., & Soibelman, L. (2019). The role of knowledgebased information on BIM for built heritage. Advances in Informatics and Computing in Civil and Construction Engineering, 27-34. https://doi.org/10.1007/978-3-030-00220-6_4 | es_ES |
dc.description.references | Comino, C. (1996). La Prefettura della Montagna di Norcia: una magistratura per il controllo territoriale nello Stato della Chiesa (1569-1630). Bollettino della Deputazione di storia patria per l'Umbria, 93(2), 83. | es_ES |
dc.description.references | Comino, C. (2000). La Prefettura della Montagna come esempio di distrettuazione periferica. In P. Monacchia (Ed.), Ut bene regantur: politica e amministrazione periferica nello Stato ecclesiastico: atti del Convegno di studi, Perugia, 6-8 maggio 1997 (pp. 231-241). Modena: Mucchi. | es_ES |
dc.description.references | Conti, A., Fiorini, L., Massaro, R., Santoni, C., & Tucci, G. (2020). HBIM for the preservation of a historic infrastructure: the Carlo III bridge of the Carolino Aqueduct. Applied Geomatics. https://doi.org/10.1007/s12518-020-00335-2 | es_ES |
dc.description.references | Costantino, D., Pepe, M., & Restuccia, A. G. (2021). Scan-to-HBIM for conservation and preservation of Cultural Heritage building: the case study of San Nicola in Montedoro church (Italy). Applied Geomatics. https://doi.org/10.1007/s12518-021-00359-2 | es_ES |
dc.description.references | Czortek, A. (2007). Frati Minori e comuni nell'Umbria del Duecento. In A. Musco, I. Palermo (Eds.) Convegno internazionale di studi. I Francescani e la politica (secc. 13.-17.). Palermo 3 - 7 dicembre 2002 Monreale e Sciacca 5 Dicembre (pp. 258). Officina di studi medievali Palermo. | es_ES |
dc.description.references | De Angelis d'Ossat, G. (1982). Proporzioni e accorgimenti visuali negli interni. In R. Bonelli (Ed.), Francesco d'Assisi. Chiese e conventi (vol. 2, pp. 151-152). Milan: Electa. | es_ES |
dc.description.references | De Meo, M. (2006). Tecniche costruttive murarie medievali. La Sabina. Rome: L'Erma di Bretschneider. | es_ES |
dc.description.references | Della Torre, S. (2012). Renovation and post-intervention management. Annales-Anali Za Istrske in Mediteranske Studije - Series Historia et Sociologia, 22(2), 533-538. | es_ES |
dc.description.references | Di Stroncone, A. (1887). L'Umbria Serafica. Miscellanea francescana di storia, di lettere, di arti, 2(4), 123. | es_ES |
dc.description.references | Diara, F., & Rinaudo, F. (2019). From reality to parametric models of cultural heritage assets for HBIM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, ISPRS Archives 42(2/W15), 413-419. https://doi.org/10.5194/isprs-archives-XLII-2-W15-413-2019 | es_ES |
dc.description.references | Doglioni, F. (1997). Stratigrafia e restauro. Tra conoscenza e conservazione dell'architettura. 312. | es_ES |
dc.description.references | Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and conservation analysis-historic building information model (HBIM). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5W4), 351-357. https://doi.org/10.5194/isprsarchives-XL-5-W4-351-2015 | es_ES |
dc.description.references | Fai, S., & Sydor, M. (2013). Building Information Modelling and the documentation of architectural heritage: Between the "typical" and the "specific." Proceedings of the DigitalHeritage 2013 (Vol. 1, pp. 731-734). https://doi.org/10.1109/DigitalHeritage.2013.6743828 | es_ES |
dc.description.references | Galiè, N., & Vecchioni G. (2006). Arquata del Tronto. Il comune dei due Parchi Nazionali. Folignano (Ascoli Piceno): Società Editrice Ricerche. | es_ES |
dc.description.references | Gironacci, I. M. (2020). State of the Art of Extended Reality Tools and Applications in Business. 105-118. https://doi.org/10.4018/978-1-7998-4339-9.ch008 | es_ES |
dc.description.references | Heesom, D., Boden, P., Hatfield, A., Rooble, S., Andrews, K., & Berwari, H. (2021). Developing a collaborative HBIM to integrate tangible and intangible cultural heritage. International Journal of Building Pathology and Adaptation, 39(1), 72-95. https://doi.org/10.1108/IJBPA-04-2019-0036 | es_ES |
dc.description.references | Ioannides, M., Magnenat-Thalmann, N., & Papagiannakis, G. (2017). Mixed Reality and Gamification for Cultural Heritage. Cham: Springer. https://doi.org/10.1007/978-3-319-49607-8 | es_ES |
dc.description.references | Jang, J., Ko, Y., Shin, W. S., & Han, I. (2021). Augmented Reality and Virtual Reality for Learning: An Examination Using an Extended Technology Acceptance Model. IEEE Access, 9, 6798-6809. https://doi.org/10.1109/ACCESS.2020.3048708 | es_ES |
dc.description.references | Jung, K., Nguyen, V. T., & Lee, J. (2021). BlocklyXR: An Interactive Extended Reality Toolkit for Digital Storytelling. Applied Sciences, 11(3), 1073. https://doi.org/10.3390/app11031073 | es_ES |
dc.description.references | Kivilcim, C. Ö., & Duran, Z. (2021). Parametric Architectural Elements from Point Clouds for HBIM Applications. International Journal of Environment and Geoinformatics, 8(2), 144-149. https://doi.org/10.30897/ijegeo.803334 | es_ES |
dc.description.references | Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507. https://doi.org/10.1016/j.jas.2009.10.011 | es_ES |
dc.description.references | Li, Y., Dong, K., & Li, G. F. (2014). The Application of BIM in the Restoration of Historical Buildings. Applied Mechanics and Materials, 638-640, 1627-1635. https://doi.org/10.4028/www.scientific.net/AMM.638-640.1627 | es_ES |
dc.description.references | Lo Turco, M., Calvano, M., & Giovannini, E. C. (2019). Data modelling for museum collections. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 433-440. https://doi.org/10.5194/isprs-archives-XLII-2-W9-433-2019 | es_ES |
dc.description.references | Loaiza Carvajal, D. A., Morita, M. M., & Bilmes, G. M. (2020). Virtual museums. Captured reality and 3D modeling. Journal of Cultural Heritage, 45, 234-239. https://doi.org/10.1016/j.culher.2020.04.013 | es_ES |
dc.description.references | Mannoni, T. (1994). Caratteri costruttivi dell'edilizia storica. Genova: ESCUM Sagep Editrice. | es_ES |
dc.description.references | Massari G. A. (2018) From Integrated Design to BIM. In Castaño Perea E., Echeverria Valiente E. (Eds.), Architectural Draughtsmanship. EGA 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-58856-8_85 | es_ES |
dc.description.references | Mol, A., Cabaleiro, M., Sousa, H. S., & Branco, J. M. (2020). HBIM for storing life-cycle data regarding decay and damage in existing timber structures. Automation in Construction, 117. https://doi.org/10.1016/j.autcon.2020.103262 | es_ES |
dc.description.references | Nieto Julián, J. E., Lara, L., & Moyano, J. (2021). Implementation of a TeamWork-HBIM for the Management and Sustainability of Architectural Heritage. Sustainability, 13(4), 1-26. https://doi.org/10.3390/su13042161 | es_ES |
dc.description.references | Nieto Julián, J., Moyano Campos, J., & García, Á. (2019). Construction study of the Palace of the Children of Don Gome (Andújar, Jaén), managed through the HBIM project. Virtual Archaeology Review, 10(20), 84-97. https://doi.org/10.4995/var.2019.10567 | es_ES |
dc.description.references | Oriel, E., & Clare, P. (2015). HBIM and matching techniques: considerations for late nineteenth- and early twentieth-century buildings. Journal of Architectural Conservation, 21(3), 145-159. https://doi.org/10.1080/13556207.2016.1139852 | es_ES |
dc.description.references | Pan, Y., & Zhang, L. (2021). A BIM-data mining integrated digital twin framework for advanced project management. Automation in Construction, 124. https://doi.org/10.1016/j.autcon.2021.103564 | es_ES |
dc.description.references | Pybus, C., Graham, K., Doherty, J., Arellano, N., & Fai, S. (2019). New Realities For Canada's Parliament: A Workflow For Preparing Heritage Bim For Game Engines And Virtual Reality. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15), 945-952. https://doi.org/10.5194/isprs-archives-XLII-2-W15-945-2019 | es_ES |
dc.description.references | Quattrini, R., Pierdicca, R., & Morbidoni, C. (2017). Knowledge-based data enrichment for HBIM: Exploring high-quality models using the semantic-web. Journal of Cultural Heritage, 28, 129-139. https://doi.org/10.1016/j.culher.2017.05.004 | es_ES |
dc.description.references | Reina Ortiz, Ortiz, M., Yang, C., Weigert, A., Dhanda, A., Min, A., Gyi, M., Su, S., Fai, S., & Santana Quintero, M. (2019). Integrating heterogeneous datasets in HBIM of decorated surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15), 981-988. https://doi.org/10.5194/isprs-archives-XLII-2-W15-981-2019 | es_ES |
dc.description.references | Stanga, C., Spinelli, C., Brumana, R., Oreni, D., Valente, R., & Banfi, F. (2017). A N-D virtual notebook about the basilica of s. Ambrogio in Milan: Information modeling for the communication of historical phases subtraction process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 653-660. https://doi.org/10.5194/isprs-archives-XLII-2-W5-653-2017 | es_ES |
dc.description.references | Simeone, D., Cursi, S., & Acierno, M. (2019). BIM semantic-enrichment for built heritage representation. Automation in Construction, 97, 122-137. https://doi.org/10.1016/j.autcon.2018.11.004 | es_ES |
dc.description.references | Trunfio, M., Lucia, M. D., Campana, S., & Magnelli, A. (2021). Innovating the cultural heritage museum service model through virtual reality and augmented reality: the effects on the overall visitor experience and satisfaction. Journal of Heritage Tourism, 1-19. https://doi.org/10.1080/1743873X.2020.1850742 | es_ES |
dc.description.references | Tucci, G., Conti, A., Fiorini, L., Corongiu, M., Valdambrini, N., & Matta, C. (2019). M-BIM: a new tool for the Galleria dell'Accademia di Firenze. Virtual Archaeology Review, 10(21), 40-55. https://doi.org/10.4995/var.2019.11943 | es_ES |
dc.description.references | Valente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L., & Previtali, M. (2017). Object-oriented approach for 3D archaeological documentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 707-712. https://doi.org/10.5194/isprs-archives-XLII-2-W5-707-2017 | es_ES |
dc.description.references | Valinejadshoubi, M., Bagchi, A., & Moselhi, O. (2018). Identifying At-Risk Non-Structural Elements in Buildings Using BIM: A Case Study Application. Journal of Earthquake Engineering, 24(5), 869-880. https://doi.org/10.1080/13632469.2018.1453407 | es_ES |
dc.description.references | Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Models (BIM) for existing buildings - literature review and future needs. Automation in Construction, 38, 109-127, https://doi.org/10.1016/j.autcon.2013.10.023 | es_ES |
dc.description.references | Wadding, L. (1628). Annales minorum in quibus res omnes trium ordinum a S. Francisco (vol. 2, pp. 31). Lione: Claudii Landry Lugduni. | es_ES |
dc.description.references | Wadding, L. (1733) Annales Minorum Seu Trium Ordinum A S. Francisco Institutorum (pp. 17). Rome: Tipi Rochi Bernabò. | es_ES |