- -

Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Banfi, Fabrizio es_ES
dc.contributor.author Brumana, Raffaella es_ES
dc.contributor.author Landi, Angelo Giuseppe es_ES
dc.contributor.author Previtali, Mattia es_ES
dc.contributor.author Roncoroni, Fabio es_ES
dc.contributor.author Stanga, Chiara es_ES
dc.date.accessioned 2022-01-25T10:54:09Z
dc.date.available 2022-01-25T10:54:09Z
dc.date.issued 2022-01-21
dc.identifier.uri http://hdl.handle.net/10251/180177
dc.description.abstract [EN] This paper describes the case study of the damaged church of St. Francesco in the hamlet of Arquata del Tronto (Italy) that was struck by the earthquake in 2016. The municipality commissioned the research to support the preliminary design of the preservation plan. The first digitisation level has been started from the richness of surveying data acquired from static and dynamic terrestrial laser scanning (TLS), and photogrammetry, overcoming challenging constraints due to the scaffolding covering the surfaces. The geometric survey allowed authors to acquire massively geometric and material information supporting the three-dimensional (3D) volume stratigraphic and the creation of the Heritage Building Information Modelling (HBIM). The paper proposes a shift from the Geographic Information System (GIS)-based analysis of the materials toward spatial HBIM management. Building Archaeology is turned into HBIM 3D volume stratigraphy, overcoming the bidimensional (2D) surface mapping, in favour of a 3D understanding of direct and indirect sources. Material mapping is added to HBIM 3D volume stratigraphy, and each stratigraphic unit (SU) has its proprieties. The 3D volume stratigraphic database has been designed to collect the data on the unit detection at three levels (direct sources data collection, indirect data documentation, the relation among the BIM object elements). A common data environment (CDE) has been set up to share the 3D volume informative models that can be accessed, and all the information gathered. The knowledge transfer using the eXtended reality (XR) has been devoted to the citizen and tourist fruition, enhancing the comprehension of difficult concepts like the SUs to support a better critical 3D reconstruction. It includes the phases of construction across time-lapse documentation that validates related information within the building archaeology informative models leaving spaces to the uncertainty and documenting the relationship established so far thanks to the direct and indirect sources. The result obtained is a live digital twin that can be continuously updated, which justifies the costs and time demanding of HBIM despite 2D drawings.Highlights: • 3D survey and scan-to-HBIM process for the creation of a digital twin were oriented to the preliminary design of the preservation plan of the church of St. Francesco in Arquata del Tronto (Italy). • Stratigraphy is investigated and oriented towards a digitisation process to share different levels of knowledge through new forms of digital-sharing such as Common Data Environment (CDE) and cloud-based BIM platform. • eXtended reality (XR) is the final tool to reach new levels of communication and a wider audience characterised by experts in the construction sector and virtual and non-expert tourists. es_ES
dc.description.abstract [ES] Este artículo describe el caso de estudio de la iglesia con patologías de San Francisco en la aldea de Arquata del Tronto (Italia), que fue golpeada por el terremoto de 2016. El municipio encargó la investigación que apoyará el diseño preliminar del plan de conservación. El primer nivel de digitalización empezó a partir de la amalgama de datos topográficos adquiridos mediante escáner láser terrestre (TLS) dinámico y estático, y fotogrametría, superando los desafiantes limitaciones ocasionadas por los andamios que cubren las superficies. El levantamiento geométrico permitió a los autores capturar información geométrica y material de manera masiva que respalda el volumen estratigráfico tridimensional (3D) y la creación del modelado de información de edificios patrimoniales (HBIM). El artículo propone el cambio del análisis de los materiales basado en los sistemas de información geográfica (SIG), a la gestión espacial HBIM. La arqueología de la construcción se convierte en estratigrafía volumétrica HBIM 3D, superando el mapeado de la superficie bidimensional (2D) en favor de una comprensión 3D de las fuentes directas e indirectas. El mapeado de los materiales se añade a la estratigrafía volumétrica 3D en HBIM, y cada unidad estratigráfica (UE) tiene sus propiedades. La base de datos 3D volumétrico-estratigráfica ha sido diseñada para capturar los datos en tres niveles (recopilación de datos de fuentes directas, documentación de datos indirectos, relación entre los elementos del objeto BIM). Se ha configurado un entorno de datos común (CDE - Common Data Environment) que comparte los modelos informativo-volumétricos 3D al que se puede acceder, así como toda la información compilada. La trasmisión del conocimiento utilizando la realidad extendida (XR - eXtended Reality) se ha dedicado a la consecución ciudadana y turística, potenciando la comprensión de conceptos difíciles como son las unidades estratigráficas que apoyan una mejor reconstrucción crítica en 3D. Incluye las fases de construcción a través de la documentación temporal que valida la información relacionada dentro de los modelos informativos de la arqueología de la construcción que deja espacios a la incertidumbre y documenta la relación establecida hasta el momento gracias a las fuentes directas e indirectas. El resultado obtenido es un gemelo digital en vivo que se puede actualizar continuamente, y esto justifica los costes y el tiempo que exige el HBIM a diferencia de los dibujos 2D. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Virtual Archaeology Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Building archaeology es_ES
dc.subject Stratigraphic unit (SU) es_ES
dc.subject HBIM es_ES
dc.subject Informative models es_ES
dc.subject 3D volume stratigraphy es_ES
dc.subject Digitisation es_ES
dc.subject Arqueología de la arquitectura es_ES
dc.subject Unidad estratigráfica es_ES
dc.subject Modelos informativos es_ES
dc.subject Estratigrafía volumétrica 3D es_ES
dc.subject Digitalización es_ES
dc.title Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication es_ES
dc.title.alternative Modelización de la información de la arqueología de la construcción transformada en estratigrafía volumétrica 3D y comunicación de realidad extendida con intervalos de tiempo es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/var.2022.15313
dc.relation.projectID info:eu-repo/grantAgreement/EC//VIGIE 2020/654/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Banfi, F.; Brumana, R.; Landi, AG.; Previtali, M.; Roncoroni, F.; Stanga, C. (2022). Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication. Virtual Archaeology Review. 13(26):1-21. https://doi.org/10.4995/var.2022.15313 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2022.15313 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 26 es_ES
dc.identifier.eissn 1989-9947
dc.relation.pasarela OJS\15313 es_ES
dc.contributor.funder UNESCO es_ES
dc.description.references Adan, A., Xiong, X., Akinci, B., & Huber, D. (2011). Automatic creation of semantically rich 3D building models from laser scanner data. Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC) (pp. 343-348). https://doi.org/10.22260/ISARC2011/0061 es_ES
dc.description.references Anselmi, S. (1977). Economia e società: le Marche tra XV e XX secolo. Società editrice il Mulino Bologna. es_ES
dc.description.references Altun, M., & Akcamete, A. (2019). A method for facilitating 4D modeling by automating task information generation and mapping. In I. Mutis, & T. Hartmann (Eds.), Advances in Informatics and Computing in Civil and Construction Engineering (pp. 479-486). Cham: Springer. https://doi.org/10.1007/978-3-030-00220-6_57 es_ES
dc.description.references Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review, 11(23), 16-33. https://doi.org/10.4995/var.2020.12416 es_ES
dc.description.references Bartolini Salimbeni, L. (1993). Architettura francescana in Abruzzo : dal 13. al 18. secolo. Saggi Di Opus. es_ES
dc.description.references Boato, A., & Pittaluga, D. (2000). Building Archaeology: a non-destructive archaeology. In Proceedings of the 15th World Conference on Nondestructive Testing, Roma (Italy) (pp. 1-5). https://www.ndt.net/article/wcndt00/papers/idn365/idn365.htm es_ES
dc.description.references Boato, A. (2008). L'archeologia in architettura. Misurazioni, stratigrafie, datazioni, restauro. Venice: Marsilio Editore. es_ES
dc.description.references Bonelli, R. (1982). Introduzione. In R. Bonelli (Ed.), Francesco d'Assisi. Chiese e conventi (vol. 2, pp. 10). Milan: Electa. es_ES
dc.description.references Brogiolo, G. P. (2002). L'Archeologia dell'architettura in Italia nell'ultimo quinquennio (1997-2001). Arqueología de la Arquitectura, 1, 19-26, https://doi.org/10.3989/arq.arqt.2002.3 es_ES
dc.description.references Brogiolo, G. P., & Cagnana, A. (2012). Archeologia dell'architettura. Metodi e interpretazioni. Florence: All'Insegna del Giglio. es_ES
dc.description.references Brumana, R., Stanga, C., & Banfi, F. (2021). Models and scales for quality control: toward the definition of specifications (GOA-LOG) for the generation and re-use of HBIM object libraries in a Common Data Environment. Applied Geomatics. https://doi.org/10.1007/s12518-020-00351-2 es_ES
dc.description.references Brumana, R., Della Torre, S., Previtali, M., Barazzetti, L., Cantini, L., Oreni, D., & Banfi, F. (2018). Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention-the Basilica di Collemaggio (L'Aquila). Applied Geomatics, 10(4), 545-567. https://doi.org/10.1007/s12518-018-0233-3 es_ES
dc.description.references Chiabrando, F., Lo Turco, M., & Rinaudo, F. (2017). Modeling the decay in an HBIM starting from 3D point clouds. A followed approach for cultural heritage knowledge. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(2W5), 605-612. https://doi.org/10.5194/isprs-archives-XLII-2-W5-605-2017 es_ES
dc.description.references Ciociola, C., & Castelli, L. (2010). La Sindone di Arquata del Tronto tra storia e leggenda. Ascoli Piceno: FAS editore. es_ES
dc.description.references Cogima, C. K., Paiva, P. V. V., Dezen-Kempter, E., Carvalho, M. A. G., & Soibelman, L. (2019). The role of knowledgebased information on BIM for built heritage. Advances in Informatics and Computing in Civil and Construction Engineering, 27-34. https://doi.org/10.1007/978-3-030-00220-6_4 es_ES
dc.description.references Comino, C. (1996). La Prefettura della Montagna di Norcia: una magistratura per il controllo territoriale nello Stato della Chiesa (1569-1630). Bollettino della Deputazione di storia patria per l'Umbria, 93(2), 83. es_ES
dc.description.references Comino, C. (2000). La Prefettura della Montagna come esempio di distrettuazione periferica. In P. Monacchia (Ed.), Ut bene regantur: politica e amministrazione periferica nello Stato ecclesiastico: atti del Convegno di studi, Perugia, 6-8 maggio 1997 (pp. 231-241). Modena: Mucchi. es_ES
dc.description.references Conti, A., Fiorini, L., Massaro, R., Santoni, C., & Tucci, G. (2020). HBIM for the preservation of a historic infrastructure: the Carlo III bridge of the Carolino Aqueduct. Applied Geomatics. https://doi.org/10.1007/s12518-020-00335-2 es_ES
dc.description.references Costantino, D., Pepe, M., & Restuccia, A. G. (2021). Scan-to-HBIM for conservation and preservation of Cultural Heritage building: the case study of San Nicola in Montedoro church (Italy). Applied Geomatics. https://doi.org/10.1007/s12518-021-00359-2 es_ES
dc.description.references Czortek, A. (2007). Frati Minori e comuni nell'Umbria del Duecento. In A. Musco, I. Palermo (Eds.) Convegno internazionale di studi. I Francescani e la politica (secc. 13.-17.). Palermo 3 - 7 dicembre 2002 Monreale e Sciacca 5 Dicembre (pp. 258). Officina di studi medievali Palermo. es_ES
dc.description.references De Angelis d'Ossat, G. (1982). Proporzioni e accorgimenti visuali negli interni. In R. Bonelli (Ed.), Francesco d'Assisi. Chiese e conventi (vol. 2, pp. 151-152). Milan: Electa. es_ES
dc.description.references De Meo, M. (2006). Tecniche costruttive murarie medievali. La Sabina. Rome: L'Erma di Bretschneider. es_ES
dc.description.references Della Torre, S. (2012). Renovation and post-intervention management. Annales-Anali Za Istrske in Mediteranske Studije - Series Historia et Sociologia, 22(2), 533-538. es_ES
dc.description.references Di Stroncone, A. (1887). L'Umbria Serafica. Miscellanea francescana di storia, di lettere, di arti, 2(4), 123. es_ES
dc.description.references Diara, F., & Rinaudo, F. (2019). From reality to parametric models of cultural heritage assets for HBIM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, ISPRS Archives 42(2/W15), 413-419. https://doi.org/10.5194/isprs-archives-XLII-2-W15-413-2019 es_ES
dc.description.references Doglioni, F. (1997). Stratigrafia e restauro. Tra conoscenza e conservazione dell'architettura. 312. es_ES
dc.description.references Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and conservation analysis-historic building information model (HBIM). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5W4), 351-357. https://doi.org/10.5194/isprsarchives-XL-5-W4-351-2015 es_ES
dc.description.references Fai, S., & Sydor, M. (2013). Building Information Modelling and the documentation of architectural heritage: Between the "typical" and the "specific." Proceedings of the DigitalHeritage 2013 (Vol. 1, pp. 731-734). https://doi.org/10.1109/DigitalHeritage.2013.6743828 es_ES
dc.description.references Galiè, N., & Vecchioni G. (2006). Arquata del Tronto. Il comune dei due Parchi Nazionali. Folignano (Ascoli Piceno): Società Editrice Ricerche. es_ES
dc.description.references Gironacci, I. M. (2020). State of the Art of Extended Reality Tools and Applications in Business. 105-118. https://doi.org/10.4018/978-1-7998-4339-9.ch008 es_ES
dc.description.references Heesom, D., Boden, P., Hatfield, A., Rooble, S., Andrews, K., & Berwari, H. (2021). Developing a collaborative HBIM to integrate tangible and intangible cultural heritage. International Journal of Building Pathology and Adaptation, 39(1), 72-95. https://doi.org/10.1108/IJBPA-04-2019-0036 es_ES
dc.description.references Ioannides, M., Magnenat-Thalmann, N., & Papagiannakis, G. (2017). Mixed Reality and Gamification for Cultural Heritage. Cham: Springer. https://doi.org/10.1007/978-3-319-49607-8 es_ES
dc.description.references Jang, J., Ko, Y., Shin, W. S., & Han, I. (2021). Augmented Reality and Virtual Reality for Learning: An Examination Using an Extended Technology Acceptance Model. IEEE Access, 9, 6798-6809. https://doi.org/10.1109/ACCESS.2020.3048708 es_ES
dc.description.references Jung, K., Nguyen, V. T., & Lee, J. (2021). BlocklyXR: An Interactive Extended Reality Toolkit for Digital Storytelling. Applied Sciences, 11(3), 1073. https://doi.org/10.3390/app11031073 es_ES
dc.description.references Kivilcim, C. Ö., & Duran, Z. (2021). Parametric Architectural Elements from Point Clouds for HBIM Applications. International Journal of Environment and Geoinformatics, 8(2), 144-149. https://doi.org/10.30897/ijegeo.803334 es_ES
dc.description.references Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507. https://doi.org/10.1016/j.jas.2009.10.011 es_ES
dc.description.references Li, Y., Dong, K., & Li, G. F. (2014). The Application of BIM in the Restoration of Historical Buildings. Applied Mechanics and Materials, 638-640, 1627-1635. https://doi.org/10.4028/www.scientific.net/AMM.638-640.1627 es_ES
dc.description.references Lo Turco, M., Calvano, M., & Giovannini, E. C. (2019). Data modelling for museum collections. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 433-440. https://doi.org/10.5194/isprs-archives-XLII-2-W9-433-2019 es_ES
dc.description.references Loaiza Carvajal, D. A., Morita, M. M., & Bilmes, G. M. (2020). Virtual museums. Captured reality and 3D modeling. Journal of Cultural Heritage, 45, 234-239. https://doi.org/10.1016/j.culher.2020.04.013 es_ES
dc.description.references Mannoni, T. (1994). Caratteri costruttivi dell'edilizia storica. Genova: ESCUM Sagep Editrice. es_ES
dc.description.references Massari G. A. (2018) From Integrated Design to BIM. In Castaño Perea E., Echeverria Valiente E. (Eds.), Architectural Draughtsmanship. EGA 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-58856-8_85 es_ES
dc.description.references Mol, A., Cabaleiro, M., Sousa, H. S., & Branco, J. M. (2020). HBIM for storing life-cycle data regarding decay and damage in existing timber structures. Automation in Construction, 117. https://doi.org/10.1016/j.autcon.2020.103262 es_ES
dc.description.references Nieto Julián, J. E., Lara, L., & Moyano, J. (2021). Implementation of a TeamWork-HBIM for the Management and Sustainability of Architectural Heritage. Sustainability, 13(4), 1-26. https://doi.org/10.3390/su13042161 es_ES
dc.description.references Nieto Julián, J., Moyano Campos, J., & García, Á. (2019). Construction study of the Palace of the Children of Don Gome (Andújar, Jaén), managed through the HBIM project. Virtual Archaeology Review, 10(20), 84-97. https://doi.org/10.4995/var.2019.10567 es_ES
dc.description.references Oriel, E., & Clare, P. (2015). HBIM and matching techniques: considerations for late nineteenth- and early twentieth-century buildings. Journal of Architectural Conservation, 21(3), 145-159. https://doi.org/10.1080/13556207.2016.1139852 es_ES
dc.description.references Pan, Y., & Zhang, L. (2021). A BIM-data mining integrated digital twin framework for advanced project management. Automation in Construction, 124. https://doi.org/10.1016/j.autcon.2021.103564 es_ES
dc.description.references Pybus, C., Graham, K., Doherty, J., Arellano, N., & Fai, S. (2019). New Realities For Canada's Parliament: A Workflow For Preparing Heritage Bim For Game Engines And Virtual Reality. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15), 945-952. https://doi.org/10.5194/isprs-archives-XLII-2-W15-945-2019 es_ES
dc.description.references Quattrini, R., Pierdicca, R., & Morbidoni, C. (2017). Knowledge-based data enrichment for HBIM: Exploring high-quality models using the semantic-web. Journal of Cultural Heritage, 28, 129-139. https://doi.org/10.1016/j.culher.2017.05.004 es_ES
dc.description.references Reina Ortiz, Ortiz, M., Yang, C., Weigert, A., Dhanda, A., Min, A., Gyi, M., Su, S., Fai, S., & Santana Quintero, M. (2019). Integrating heterogeneous datasets in HBIM of decorated surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15), 981-988. https://doi.org/10.5194/isprs-archives-XLII-2-W15-981-2019 es_ES
dc.description.references Stanga, C., Spinelli, C., Brumana, R., Oreni, D., Valente, R., & Banfi, F. (2017). A N-D virtual notebook about the basilica of s. Ambrogio in Milan: Information modeling for the communication of historical phases subtraction process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 653-660. https://doi.org/10.5194/isprs-archives-XLII-2-W5-653-2017 es_ES
dc.description.references Simeone, D., Cursi, S., & Acierno, M. (2019). BIM semantic-enrichment for built heritage representation. Automation in Construction, 97, 122-137. https://doi.org/10.1016/j.autcon.2018.11.004 es_ES
dc.description.references Trunfio, M., Lucia, M. D., Campana, S., & Magnelli, A. (2021). Innovating the cultural heritage museum service model through virtual reality and augmented reality: the effects on the overall visitor experience and satisfaction. Journal of Heritage Tourism, 1-19. https://doi.org/10.1080/1743873X.2020.1850742 es_ES
dc.description.references Tucci, G., Conti, A., Fiorini, L., Corongiu, M., Valdambrini, N., & Matta, C. (2019). M-BIM: a new tool for the Galleria dell'Accademia di Firenze. Virtual Archaeology Review, 10(21), 40-55. https://doi.org/10.4995/var.2019.11943 es_ES
dc.description.references Valente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L., & Previtali, M. (2017). Object-oriented approach for 3D archaeological documentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 707-712. https://doi.org/10.5194/isprs-archives-XLII-2-W5-707-2017 es_ES
dc.description.references Valinejadshoubi, M., Bagchi, A., & Moselhi, O. (2018). Identifying At-Risk Non-Structural Elements in Buildings Using BIM: A Case Study Application. Journal of Earthquake Engineering, 24(5), 869-880. https://doi.org/10.1080/13632469.2018.1453407 es_ES
dc.description.references Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Models (BIM) for existing buildings - literature review and future needs. Automation in Construction, 38, 109-127, https://doi.org/10.1016/j.autcon.2013.10.023 es_ES
dc.description.references Wadding, L. (1628). Annales minorum in quibus res omnes trium ordinum a S. Francisco (vol. 2, pp. 31). Lione: Claudii Landry Lugduni. es_ES
dc.description.references Wadding, L. (1733) Annales Minorum Seu Trium Ordinum A S. Francisco Institutorum (pp. 17). Rome: Tipi Rochi Bernabò. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem