- -

A novel self-learning framework for bladder cancer grading using histopathological images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A novel self-learning framework for bladder cancer grading using histopathological images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Pardo, José Gabriel es_ES
dc.contributor.author Esteve, Anna es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Ramos, David es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-01-27T19:03:13Z
dc.date.available 2022-01-27T19:03:13Z
dc.date.issued 2021-11 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180289
dc.description.abstract [EN] In recent times, bladder cancer has increased significantly in terms of incidence and mortality. Currently, two subtypes are known based on tumour growth: non-muscle invasive (NMIBC) and muscle-invasive bladder cancer (MIBC). In this work, we focus on the MIBC subtype because it has the worst prognosis and can spread to adjacent organs. We present a self-learning framework to grade bladder cancer from histological images stained by immunohistochemical techniques. Specifically, we propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows for the classification of histological patches into different levels of disease severity, according to established patterns in the literature. The proposed DCEAC model follows a fully unsupervised two-step learning methodology to discern between non-tumour, mild and infiltrative patterns from high-resolution 512 x 512 pixel samples. Our system outperforms previous clustering-based methods by including a convolutional attention module, which enables the refinement of the features of the latent space prior to the classification stage. The proposed network surpasses state-of-the-art approaches by 2-3% across different metrics, reaching a final average accuracy of 0.9034 in a multi-class scenario. Furthermore, the reported class activation maps evidence that our model is able to learn by itself the same patterns that clinicians consider relevant, without requiring previous annotation steps. This represents a breakthrough in MIBC grading that bridges the gap with respect to training the model on labelled data. es_ES
dc.description.sponsorship This work has been partially funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 860627 (CLARIFY Project), the State Research Spanish Agency under the AI4SKIN project (PID2019- 105142RB-C21) and GVA through project PROMETEO/2019/109. The work of Gabriel García has been supported by the State Research Spanish Agency PTA2017-14610-I. The equipment used for this research has been funded by the European Union within the operating Program ERDF of the Valencian Community 2014-2020 with the grant number IDIFEDER/2020/030. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Bladder cancer es_ES
dc.subject Tumour budding es_ES
dc.subject Unsupervised learning es_ES
dc.subject Deep clustering es_ES
dc.subject Histopathological images es_ES
dc.subject Self-learning es_ES
dc.subject Immunohistochemical staining es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A novel self-learning framework for bladder cancer grading using histopathological images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2021.104932 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PTA2017-14610-I//AYUDA TECNICO DE APOYO MINISTERIO-GARCIA PARDO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PTA2017-14610-I//AYUDA TECNICO DE APOYO MINISTERIO-GARCIA PARDO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Pardo, JG.; Esteve, A.; Colomer, A.; Ramos, D.; Naranjo Ornedo, V. (2021). A novel self-learning framework for bladder cancer grading using histopathological images. Computers in Biology and Medicine. 138:1-11. https://doi.org/10.1016/j.compbiomed.2021.104932 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2021.104932 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 138 es_ES
dc.identifier.pmid 34673472 es_ES
dc.relation.pasarela S\447664 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem