Mostrar el registro sencillo del ítem
dc.contributor.author | Fdez-Arroyabe, Pablo | es_ES |
dc.contributor.author | Kourtidis, Konstantinos | es_ES |
dc.contributor.author | Haldoupis, Christos | es_ES |
dc.contributor.author | Savoska, Snezana | es_ES |
dc.contributor.author | Matthews, James | es_ES |
dc.contributor.author | Mir, Luis M. | es_ES |
dc.contributor.author | Kassomenos, Pavlos | es_ES |
dc.contributor.author | Cifra, Michal | es_ES |
dc.contributor.author | Barbosa, Susana | es_ES |
dc.contributor.author | Chen, Xuemeng | es_ES |
dc.contributor.author | Dragovic, Snezana | es_ES |
dc.contributor.author | Consoulas, Christos | es_ES |
dc.contributor.author | Hunting, Ellard R. | es_ES |
dc.contributor.author | Robert, Daniel | es_ES |
dc.contributor.author | López Jiménez, Petra Amparo | es_ES |
dc.date.accessioned | 2022-01-28T07:40:50Z | |
dc.date.available | 2022-01-28T07:40:50Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.issn | 0020-7128 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180318 | |
dc.description.abstract | [EN] There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research. | es_ES |
dc.description.sponsorship | This paper is based upon work from the COST Action "Atmospheric Electricity Network: coupling with the Earth System, climate and biological systems (ELECTRONET)," supported by COST (European Cooperation in Science and Technology). AO received funding from Poland Ministry of Science and Higher Education for statutory research of the Institute of Geophysics, Polish Academy of Sciences (Grant No 3841/E-41/S/2019). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | International Journal of Biometeorology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atmospheric electricity phenomena | es_ES |
dc.subject | Atmospheric electric field | es_ES |
dc.subject | Biological effects | es_ES |
dc.subject | Biometeorological profile | es_ES |
dc.subject | Glossary | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Glossary on atmospheric electricity and its effects on biology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00484-020-02013-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MNiSW//3841%2FE-41%2FS%2F2019/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Fdez-Arroyabe, P.; Kourtidis, K.; Haldoupis, C.; Savoska, S.; Matthews, J.; Mir, LM.; Kassomenos, P.... (2021). Glossary on atmospheric electricity and its effects on biology. International Journal of Biometeorology. 65(1):5-29. https://doi.org/10.1007/s00484-020-02013-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00484-020-02013-9 | es_ES |
dc.description.upvformatpinicio | 5 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 65 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33025117 | es_ES |
dc.relation.pasarela | S\423580 | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.contributor.funder | Ministry of Science and Higher Education, Polonia | es_ES |
dc.description.references | Adrovic F (2012) Editor, Gamma radiation, IntechOpen. | es_ES |
dc.description.references | Alberts B (2014). Molecular biology of the cell (6th ed.). New York. ISBN 9780815344322 | es_ES |
dc.description.references | Ambus Per, (2015) Sophie Zechmeister-Boltenstern Sophie, in Biology of the Nitrogen Cycle, 2007.G.P. Robertson1, P.M. Groffman2, in Soil Microbiology, Ecology and Biochemistry (4th Edition) | es_ES |
dc.description.references | Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, Denzi A, Marino C, d’Inzeo G (2013) Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microwave Theory Techn 61(5):2031–2045. https://doi.org/10.1109/TMTT.2013.2250298 | es_ES |
dc.description.references | Arnold F (1986) Atmospheric ions. Stud Environ Sci 26(103-133):135–142 | es_ES |
dc.description.references | Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106(2):1741 | es_ES |
dc.description.references | Bazilevskaya G (2000) Observations of variability in cosmic rays. Space Sci Rev 94:25–38. https://doi.org/10.1023/A:1026721912992 | es_ES |
dc.description.references | Benson D, Markovich A, Lee SH (2010) Ternary homogeneous nucleation of H2SO, NH3, H2O under conditions relevant to the lower troposphere. Atmos Chem Phys 10(9):22395–22414 | es_ES |
dc.description.references | Bonnafous P et al (1999) The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilization of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim et BiophysActa (BBA) - Biomembr 1461:123–134. https://doi.org/10.1016/S0005-2736(99)00154-6 | es_ES |
dc.description.references | Bór (2013) Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009. J Atmos Sol Terr Phys 92:151–177. https://doi.org/10.1016/j.jastp.2012.10.008 | es_ES |
dc.description.references | Bowker GE, Crenshaw HC (2007) Electrostatic forces in wind-pollination, Part 1: Measurement of the electrostatic charge on pollen. Atmos Environ 41(8):1587–1595 | es_ES |
dc.description.references | Buonsanto MJ (1999) Ionospheric storms–a review. Space Sci Rev 88:563–601 | es_ES |
dc.description.references | Chafai DE et al (2019) Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater 31:e1903636 | es_ES |
dc.description.references | Chalmers JA (1949) Atmospheric electricity, 1st edn. Pergamon Press, Oxford | es_ES |
dc.description.references | Chilingarian A, Soghomonyan S, Khanikyanc Y, Pokhsraryan D (2019) On the origin of particle fluxes from thunderclouds. Astropart Phys 105:54–62 | es_ES |
dc.description.references | Cifra M, Pospíšil P (2014) Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B Biol 139:2–10. https://doi.org/10.1016/j.jphotobiol.2014.02.009 | es_ES |
dc.description.references | Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105(3):223–246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003 | es_ES |
dc.description.references | Cifra M, Apollonio F, Liberti M et al (2020) Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01885-1 | es_ES |
dc.description.references | Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69 | es_ES |
dc.description.references | Clarke D, Morley E, Robert D (2017) The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A 203(9):737–748 | es_ES |
dc.description.references | Corbet SA, Beament J, Eisikowitch D (1982) Are electrostatic forces involved in pollen transfer? Plant Cell Environ 5(2):125–129 | es_ES |
dc.description.references | Daintith and Gould (2006) The facts on file dictionary of astronomy/edited by John Daintith, William Gould New York, NY: Facts on File, c1994. Call # 520.3 FA. “Cosmic rays are a global source of ionization distributed through the Galaxy.” Source: Dalgarno, A. (2006), Interstel | es_ES |
dc.description.references | Dal Maso M, Kulmala M, Lehtinen KEJ, Mäkelä JM, Aalto P, O’Dowd CD (2002) Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J Geophys Res 107. https://doi.org/10.1029/2001jd00 | es_ES |
dc.description.references | Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ Res 1:2005 | es_ES |
dc.description.references | Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrost 62(4):277–290. https://doi.org/10.1016/j.elstat.2004.05.005 | es_ES |
dc.description.references | Djafer D, Irbah A (2013) Estimation of atmospheric turbidity over Ghardaïa city. Atmos Res, Elsevier 128:76–84. https://doi.org/10.1016/j.atmosres.2013.03.009ff.ffhal-00801475f | es_ES |
dc.description.references | Dusenbery DB (1992) Sensory ecology. W.H. Freeman, New York ISBN 0-7167-2333-6 | es_ES |
dc.description.references | EC-GPHSW (2013) European Commission. Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work-guidance for employers and health and safety practitioners. Brussels | es_ES |
dc.description.references | Encyclopedia Britannica, (2019) https://www.britannica.com/ Accessed 1.10.2019 | es_ES |
dc.description.references | European Committee for Standardization (1993) CEN-EN 481-workplace atmospheres-size fraction definitions for measurement of airborne particles. | es_ES |
dc.description.references | Fernandez de Arroyabe P, Lecha Estela L, Schimt F (2017) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 2018:733–740. https://doi.org/10.1007/s00484-017-1398-x | es_ES |
dc.description.references | Feynman R (1970) The Feynman lectures on physics Vol II Addison-Wesley Publishing Longman. | es_ES |
dc.description.references | Finlay CC et al (2010) International Geomagnetic Reference Field: the eleventh generation. Geophys J Int 183(3):1216–1230 | es_ES |
dc.description.references | Fishman GJ, Bhat PN, Mallozzi R, Horack JM, Koshut T, Kouveliotou C, Pendleton GN, Meegan CA, Wilson RB, Paciesas WS, Goodman SJ, Christian HJ (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163):1313–1316. https://doi.org/10.1126/science.264.5163.1313 | es_ES |
dc.description.references | Forbush SE (1937) On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys Rev 51(12):1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3 | es_ES |
dc.description.references | Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51 | es_ES |
dc.description.references | Freeman S, Quilin K, Allison L (1965) Biological science 5th edition. (2013) Pearson Publishing.p.1059. | es_ES |
dc.description.references | Fullekrug, M., and M. J. Rycroft (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58(9):1193–1196 | es_ES |
dc.description.references | Fundamentals of Electronics (1965) Volume 1b — Basic Electricity - Alternating Current. Bureau of Naval Personnel. 1965. p. 197 | es_ES |
dc.description.references | GFCS. WMO-WHO Global Framework for Climate Services (GFCS) (2020) http://www.wmo.int/gfcs/about-gfcs, Accessed 1.10.2019 | es_ES |
dc.description.references | Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space 99(A4):5771–5792. https://doi.org/10.1029/93JA02867 | es_ES |
dc.description.references | GSFT - Glossary for the Solar Flare Theory (n.d.) web site by Gordon Holman and Sarah Benedict. Responsible NASA Official: Gordon D. Holman, Heliophysics Science Division, NASA/Goddard Space Flight Center, Solar Physics Laboratory / Code 671, Gordon.D.Holman@nasa.gov | es_ES |
dc.description.references | Gueymard C (1998) Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach. J Appl Meteorol 37:414–435 | es_ES |
dc.description.references | Gunn R (1954) Diffusion charging of atmospheric droplets by ions, and the resulting combination coefficients. J Atmos Sci 11(5):339–347 | es_ES |
dc.description.references | Haldoupis C (2012) Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci Rev 168:441–461 | es_ES |
dc.description.references | Handbook of Biological Effects of Electromagnetic Fields (third), (2007) Edited by Frank S. Barnes and Ben Greenebaum, 2007, CRC Press Taylor & Francis Group Boca Raton 33487-32742 | es_ES |
dc.description.references | Hargreaves JK (1992) The solar-terrestrial environment. Cambridge Atmospheric and Space Science Series. Cambridge University Press | es_ES |
dc.description.references | Harrison RG (2000) Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci Rev 94(1):381–396 | es_ES |
dc.description.references | Harrison RG (2013) The Carnegie curve. Surv Geophys 34:209–232. https://doi.org/10.1007/s10712-012-9210-2 | es_ES |
dc.description.references | Harrison RG, Nicoll KA (2018) Fair weather criteria for atmospheric electricity measurements. J Atmos Sol Terr Phys 179:239–250 | es_ES |
dc.description.references | Harrison RG, Tammet H (2008) Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci Rev 137:107–118. https://doi.org/10.1007/s11214-008-9356-x | es_ES |
dc.description.references | Hayakawa M, Hattori K, Ando Y (2004) Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater 124(2004):72–79 | es_ES |
dc.description.references | Hekstra DR et al (2016) Electric-field-stimulated protein mechanics. Nature 540.7633(2016):400 | es_ES |
dc.description.references | Hinds W C (1982, 1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York. | es_ES |
dc.description.references | Hirsikko A, Nieminen T, Gagné S, Lehtipalo K, Manninen HE, Ehn M, Hõrrak U, Kerminen VM, Laakso L, McMurry PH, Mirme A, Mirme S, Petäjä T, Tammet H, Vakkari V, Vana M, Kulmala M (2011) Atmospheric ions and nucleation: a review of observations. Atmos Chem Phys 11:767–798. https://doi.org/10.5194/acp-11-767-2011 | es_ES |
dc.description.references | Hodgkin AL, Huxley AF (1952) Aquantitative description of membrane current and its application to conduction and excitation in nerves. J Physiol 117(4):500–544 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/ | es_ES |
dc.description.references | Hoppel WA (1969) Application of three-body recombination and attachment coefficients to tropospheric ions. Pure Appl Geophys 75:158–166 | es_ES |
dc.description.references | Hörrak U, Salm J, Tammet H (2000) Statistical characterization of air ion mobility spectra at Tahkuse Observatory: classification of air ions. J Geophys Res 105(D7):9291–9302 | es_ES |
dc.description.references | Hundhausen AJ (1995) The solar wind. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, pp 91–198 | es_ES |
dc.description.references | Hunting, E.R., Matthews, J., de Arróyabe Hernáez, P.F., England, S.J., Kourtidis, K., Koh, K., Nicoll, K., Harrison, R.G., Manser, K., Price, C. and Dragovic, S., (2020). Challenges in coupling atmospheric electricity with biological systems. u, pp.1-14. https://doi.org/10.1007/s00484-020-01960-7 | es_ES |
dc.description.references | ICRP (1994) International Commission on Radiological Protection Human respiratory tract model for radiological protection, Annual 66. | es_ES |
dc.description.references | Imyanitov IM (1957) Instruments and methods for the study of atmospheric electricity (in Russian), Gostekhizdat. | es_ES |
dc.description.references | Imyanitov IM, Chubarina EV (1967) Electricity of free atmosphere, (Gidrometeoizdat, 1965) NASA/NSF Israel Program for Scientific Translations. | es_ES |
dc.description.references | Israël H (1971) Atmospheric electricity, Vol. I, Fundamentals, conductivity, ions, Israel Program for Scientific Translations, Jerusalem | es_ES |
dc.description.references | Israël H (1973) Atmospheric electricity, Vol. II, Fields, charges, currents, Israel Program for Scientific Translations, Jerusalem. | es_ES |
dc.description.references | James MR, Wilson L, Lane SJ, Gilbert JS, Mather TA, Harrison RG, Martin RS (2008) Electrical charging of volcanic plumes, Space Sci. Rev. 137:399–418. https://doi.org/10.1007/s11214-008-9362-z | es_ES |
dc.description.references | Järvinen A, Aitomaa M, Rostedt A, Keskinen J, Yli-Ojanperä J (2014) Calibration of the new electrical low pressure impactor (ELPI+). J Aerosol Sci 69:150–159. https://doi.org/10.1016/j.jaerosci.2013.12.006 | es_ES |
dc.description.references | Kathren, RL (1998) NORM sources and their origins. Applied Radiation and Isotopes, 49(3):149–168. | es_ES |
dc.description.references | Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega IK, Wagner R, Adamov A, Amorim A, Bernhammer AK, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan RC, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle CR, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, Kürten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan AP, Pringle K, Rap A, Richards NAD, Riipinen I, Rissanen MP, Rondo L, Sarnela N, Schobesberger S, Scott CE, Seinfeld JH, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, Tomé A, Virtanen A, Vogel AL, Wagner AC, Wagner PE, Weingartner E, Wimmer D, Winkler PM, Ye P, Zhang X, Hansel A, Dommen J, Donahue NM, Worsnop DR, Baltensperger U, Kulmala M, Carslaw KS, Curtius J (2016) Ion-induced nucleation of pure biogenic particles. Nature 533:521–526. https://doi.org/10.1038/nature17953 | es_ES |
dc.description.references | Kivelson MG, Russel ZT (1995) Introduction to space physics. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Kulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley, New York | es_ES |
dc.description.references | Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PP, Junninen H, Paasonen P, Riipinen I, Lehtinen KE, Laaksonen A, Kerminen VM (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7(9):1651–1667. https://doi.org/10.1038/nprot.2012.091https://www.nature.com/articles/nprot.2012.091 | es_ES |
dc.description.references | Kulmala M, Petaja T, Ehn M, Thornton J, Sipila M, Worsnop DR, Kerminen VM (2014) Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu Rev Phys Chem 65:21–37 | es_ES |
dc.description.references | L’Annunziata MF (2016) Radioactivity, Elsevier | es_ES |
dc.description.references | Laakso L, Anttila T, Lehtinen KEJ, Aalto PP, Kulmala M, Hõrrak U, Paatero J, Hanke M, Arnold F (2004) Kinetic nucleation and ions in boreal forest particle formation events. Atmos Chem Phys 4:2353–2366. https://doi.org/10.5194/acp-4-2353-2004 | es_ES |
dc.description.references | Lee J-H, Jang A, Bhadri PR, Myers RR, Timmons W, Beyette FR, Papautsky I (2006) Fabrication of microelectrode arrays for in situ sensing of oxidation reduction potentials. Sensors Actuators B 115:220–226. | es_ES |
dc.description.references | Liberti M, Apollonio F, Merla C, D’Inzeo G (2009) Microdosimetry in the microwave range: a quantitative assessment at single cell level. IEEE Antennas Wireless Propagation Lett 8(5170009):865–868 | es_ES |
dc.description.references | Lidén G (2011) The European Commission tries to define nanomaterials. Ann OccupHyg 55:1–5. https://doi.org/10.1093/annhyg/meq092 | es_ES |
dc.description.references | Liu KN (2002) An introduction to atmospheric radiation. Academic Press, Cambridge | es_ES |
dc.description.references | Love JJ, Bedrosian PA (2019) Extreme-event geoelectric hazard maps. In: Buzulukova N (ed) Extreme events in geospace-origins, predictability, and consequences. Elsevier, Amsterdam, pp 209–230 | es_ES |
dc.description.references | Lui ATY (1992) Magnetospheric substorms. Physics Fluids B: Plasma Physics 4:2257–2263. https://doi.org/10.1063/1.860194 | es_ES |
dc.description.references | Maccarrone M, Fantini C, Finazzi Agrò A, Rosato N (1998) Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation. Biochim et BiophysActa (BBA) - Biomembr 1414:43–50. https://doi.org/10.1016/S0005-2736(98)00150-3 | es_ES |
dc.description.references | MacGorman D, Rust WD (1998) The electrical nature of storms. Oxford University Press, New York | es_ES |
dc.description.references | Mach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201. https://doi.org/10.1029/2010JD014462 | es_ES |
dc.description.references | Magono C (1980) Thunderstorms. Elsevier, Amsterdam | es_ES |
dc.description.references | Markson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88(2):223–242. https://doi.org/10.1175/BAMS-88-2-223 | es_ES |
dc.description.references | Marracino P et al (2019) Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 9.1(2019):10477 | es_ES |
dc.description.references | Mathews JD (1998) Sporadic E: current views and recent progress. J Atmos Sol-Terr Phys 60:413 | es_ES |
dc.description.references | McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiol, Biochem and Pharma, 6th edn. Pergamon Press, Oxford | es_ES |
dc.description.references | McPherron RL (1995) Magnetospheric dynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 400–457 | es_ES |
dc.description.references | Mirabel PJ, Jaecker-Voirol A (1988) Binary homogeneous nucleation. In: Wagner PE, Vali G (eds) Atmospheric aerosols and nucleation. Lecture Notes in Physics, 309th edn. Springer, Berlin | es_ES |
dc.description.references | Mirme A, Tamm E, Mordas G, Vana M, Uin J, Mirme S, Bernotas T, Laakso L, Hirsikko A, Kulmala M (2007) A wide-range multi-channel air ion spectrometer. Boreal Environ Res 12:247–264 | es_ES |
dc.description.references | Miroshnichenko L (2015) Solar cosmic rays: fundamentals and applications. Springer, Berlin | es_ES |
dc.description.references | Mitsutake G, Otsuka K, Hayakawa M, Sekiguchi M, Corndlissen G, Halberg F (2005) Does Schumann resonance affect our blood pressure? Biomed Pharmacother 59:S10–S14 | es_ES |
dc.description.references | Munn RE (1987) Bioclimatology. In: Climatology. Encyclopedia of Earth Science. Springer, Boston. https://doi.org/10.1007/0-387-30749-4_26 | es_ES |
dc.description.references | NASA (2020) https://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather.html Accessed in February 2020 | es_ES |
dc.description.references | Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C-F, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. https://doi.org/10.1007/s10712-008-9043-1 | es_ES |
dc.description.references | Nickolaenko AP, Hayakawa M, Hobara Y, (2010) Q-Bursts: natural ELF radio transients, Surv Geophys, Volume 31 4:409-425. https://doi.org/10.1007/s10712010-9096-9 | es_ES |
dc.description.references | Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth–ionosphere cavity. Kluwer Academic Publishers, Dordrecht | es_ES |
dc.description.references | Odzimek A, Baranski P, Kubicki M, Jasinkiewicz D (2018) Electrical signatures of nimbostratus and stratus clouds in ground-level vertical atmospheric electric field and current density at mid-latitude station Swider, Poland. Atmos Res 109C:188–203. https://doi.org/10.1016/j.atmosres.2018.03.018 | es_ES |
dc.description.references | Ogawa T, Tanaka Y, Yasuhara M, Fraser-Smith AC, Gendrin R (1967) Worldwide simultaneity of occurrence of a Q-type burst in the Schumann resonance frequency range. J Geomagn Geoelectr 19:377–384 | es_ES |
dc.description.references | Ouzounov D, Pulinets S, Hattori K, Taylor P (2018) Pre-earthquake processes: a multidisciplinary approach to earthquake prediction studies. American Geophysical Union, Washington | es_ES |
dc.description.references | Palmer SJ, Rycroft MJ, Cermak M (2006) Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27:557–595 | es_ES |
dc.description.references | Parkinson WL, Torreson OW (1931) The diurnal variation of the electric potential of the atmosphere over the oceans. Union Géodésique et Géophysique Internationale Bulletin 8:340–345 | es_ES |
dc.description.references | Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms, and effects, Space Sci. Rev. 168:475–516. https://doi.org/10.1007/s11214-011-9813-9 | es_ES |
dc.description.references | Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44, no. 46 (2005): 7520–40. | es_ES |
dc.description.references | Price C (2016) ELF Electromagnetic waves from lightning: the Schumann resonances. Atmosphere 7(9):116. https://doi.org/10.3390/atmos7090116 | es_ES |
dc.description.references | Price C, Williams E, Elhalel G, & Sentman D (2020). Natural ELF fields in the atmosphere and in living organisms. In J Biometeorol 1-8. | es_ES |
dc.description.references | Priest ER (1995) Sun and its magnetohydrodynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 58–90 | es_ES |
dc.description.references | Probstein RF, Hicks R (1993) Removal of contaminants from soils by electric fields. Science 260(5107):498–503 | es_ES |
dc.description.references | Purcell and Morin (2013) Harvard University. Electricity and Magnetism, 820 pages (3rd). Cambridge University Press, New York. ISBN 978-1-107-01402-2. | es_ES |
dc.description.references | Rakov VA, Uman MA (2002) Lightning: physics and effects. Press, Cambridge University | es_ES |
dc.description.references | Reiter R (1985) Fields, currents and aerosols in the lower atmosphere, Steinkopff Verlag, NSF Translation TT 76-52030 | es_ES |
dc.description.references | Repacholi, Michael HB, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20(3):133–160 | es_ES |
dc.description.references | Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5) | es_ES |
dc.description.references | Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31(Pt 6):1095–1105. https://doi.org/10.1042/BST0311095 | es_ES |
dc.description.references | Rishbeth H, Garriot OK (1969), Introduction to ionospheric physics, Academic Press. | es_ES |
dc.description.references | Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317–336. https://doi.org/10.1029/1999RG900006 | es_ES |
dc.description.references | Rogers RR (1979) A short course in cloud physics. Press, Pergamon | es_ES |
dc.description.references | Ross E, Chaplin WJ (2019) The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol Phys 294:8 | es_ES |
dc.description.references | Ruggeri F, Zosel F, Mutter N, Różycka M, Wojtas M, Ożyhar A, Schuler B, Krishnan M (2017) Single-molecule electrometry. Nat Nanotechnol 12(5):488–495 | es_ES |
dc.description.references | Runge J, Balasis G, Daglis IA, Papadimitriou C, Donner RV (2018) Common solar wind drivers behind magnetic storm-magnetospheric substorm dependency. Nat Sci Rep 8:16987. https://doi.org/10.1038/s41598-018-35250-5 | es_ES |
dc.description.references | Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:A00E37. https://doi.org/10.1029/2009JA014758 | es_ES |
dc.description.references | Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol-Terr Phys 62:1563–1576. https://doi.org/10.1016/S1364-6826(00)00112-7 | es_ES |
dc.description.references | Schonland BFJ (1950) The flight of thunderbolts. 44–47. | es_ES |
dc.description.references | Schumann, WO (1952) Z. Naturforsch. A, 7, 149-154, doi: https://doi.org/10.1515/zna-1952-0202. | es_ES |
dc.description.references | Schwan HP (1999) Bioelectromagnetics, Carl Durney, and dosimetry: Some historical remarks. Bioelectromagnetics 20:3–8 | es_ES |
dc.description.references | Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change, 3rd ed. John Wiley & Sons | es_ES |
dc.description.references | Sentman DD (1995) Schumann resonances. In: Volland H (ed) Handbook of atmospheric electrodynamics, 1st edn. CRC Press, London, pp 267–296 | es_ES |
dc.description.references | Shibata K, Magara T (2011) Solar flares: magnetohydrodynamic processes. Living Rev Sol Phys 8:6. https://doi.org/10.12942/lrsp-2011-6 | es_ES |
dc.description.references | Shuman NS, Hunton DE, Viggiano AA (2015) Ambient and modified atmospheric ion chemistry: from top to bottom. Chem Rev 115:4542–4570. https://doi.org/10.1021/cr5003479 | es_ES |
dc.description.references | Singh D, Gopalakrishnan V, Singh RP et al (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110 | es_ES |
dc.description.references | Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307:1085–1088. https://doi.org/10.1126/science.1107466 | es_ES |
dc.description.references | Sollazzo A, Brzozowska B, Cheng L, Undholm L, Haghdoost S, Scherthan H, Wojcik A (2017) Alpha particles and X rays interact in inducing DNA damage in U2OS cells. Radiat Res 188:400–411 | es_ES |
dc.description.references | Sontag ES, Borgnakke C, Van Wylen GJ (2003) Fundamentals of thermodynamics, 6th Edition, John Wiley & Sons | es_ES |
dc.description.references | Soula S et al (2011) Gigantic jets produced by an isolated tropical thunderstorm near Reunion Island. J Geophys Res 116(D19103):14. https://doi.org/10.1029/2010JD015581 | es_ES |
dc.description.references | Stix M (2002) The sun. An introduction, Springer. | es_ES |
dc.description.references | Tandberg-Hansen E (2009) The physics of solar flares. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Tsong TY, Astumian RD (1986) 863—absorption and con-version of electric field energy by membrane bound ATPases. Bioelectrochem Bioenergetics 15, no 3(1986):457–476 | es_ES |
dc.description.references | Uman M (2008) The art and science of lightning protection, Cambridge University Press, Cambridge | es_ES |
dc.description.references | UNSCEAR (2016) United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR Report, Report to the General Assembly, Annex B. | es_ES |
dc.description.references | USGS (2020) Geological Survey Earthquake Hazards Program https://earthquake.usgs.gov/. (Accessed in 2020) | es_ES |
dc.description.references | Vallero DA (2014) Fundamentals of air pollution, Academic Press | es_ES |
dc.description.references | Volland H (1984) Atmospheric electrodynamics, physics and chemistry in space, Springer- Verlag. | es_ES |
dc.description.references | Volland H (1995) Handbook of Atmospheric Electrodynamics. Editor CRC Press Revivals, 2017 | es_ES |
dc.description.references | Vorenhout M, van der Geest HG, van Marum D, Wattel K, Eijsackers HJP (2004) Automated and continuous redox potential measurements in soil. J Environ Qual 33(4):1562–1567. https://doi.org/10.2134/jeq2004.1562 | es_ES |
dc.description.references | Vorenhout M, van der Geest HG, Hunting ER (2011) An improved datalogger and novel probes for continuous redox measurements in wetlands. Int J Environ Anal Chem 91(7-8):801–810 | es_ES |
dc.description.references | Wahlin L (1986) Atmospheric electrostatics, Research Studies Press. | es_ES |
dc.description.references | Wallace JM and Hobbs PV (2006) Atmospheric Science: an Introductory Survey, Elsevier | es_ES |
dc.description.references | Wever R (1973) Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol 17(3):227–232 | es_ES |
dc.description.references | White D (1999) The physiology and biochemistry of prokaryotes (2nd ed.). Oxford University Press.ISBN 978-0-19-512579-5. | es_ES |
dc.description.references | Whitehead JD (1989) Recent work on midlatitude and equatorial sporadic E. J Atmos Sol-Terr Phys 51:401 | es_ES |
dc.description.references | Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389 | es_ES |
dc.description.references | Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa AM, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren JA, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings SG, O'Dowd CD, Marinoni A, Horn HG, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao CS, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S (2012) Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Tech 5:657–685. https://doi.org/10.5194/amt-5-657-2012 | es_ES |
dc.description.references | Williams E, Mareev E (2014) Recent progress on the global electrical circuit. Atmos Res 135-136:208–227. https://doi.org/10.1016/j.atmosres.2013.05.015 | es_ES |
dc.description.references | Wilson CTR (1906) On the measurements of the earth-air current and on the origin of atmospheric electricity. Proc Camb Philol Soc 13:363–382 | es_ES |
dc.description.references | Wilson CTR (1921) Investigation on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc London Series A 211:73–115 | es_ES |
dc.description.references | Winzor DJ (2005) Protein charge determination. Curr Protocols Protein Sci 41(1):2–10 | es_ES |
dc.description.references | WMO (2017) International cloud atlas, manual on the observation of clouds and other meteors, WMO-No. 407 WMO, Geneva. https://cloudatlas.wmo.int/clouds-genera-cumulonimbus.html | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |