- -

Glossary on atmospheric electricity and its effects on biology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glossary on atmospheric electricity and its effects on biology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fdez-Arroyabe, Pablo es_ES
dc.contributor.author Kourtidis, Konstantinos es_ES
dc.contributor.author Haldoupis, Christos es_ES
dc.contributor.author Savoska, Snezana es_ES
dc.contributor.author Matthews, James es_ES
dc.contributor.author Mir, Luis M. es_ES
dc.contributor.author Kassomenos, Pavlos es_ES
dc.contributor.author Cifra, Michal es_ES
dc.contributor.author Barbosa, Susana es_ES
dc.contributor.author Chen, Xuemeng es_ES
dc.contributor.author Dragovic, Snezana es_ES
dc.contributor.author Consoulas, Christos es_ES
dc.contributor.author Hunting, Ellard R. es_ES
dc.contributor.author Robert, Daniel es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.date.accessioned 2022-01-28T07:40:50Z
dc.date.available 2022-01-28T07:40:50Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0020-7128 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180318
dc.description.abstract [EN] There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research. es_ES
dc.description.sponsorship This paper is based upon work from the COST Action "Atmospheric Electricity Network: coupling with the Earth System, climate and biological systems (ELECTRONET)," supported by COST (European Cooperation in Science and Technology). AO received funding from Poland Ministry of Science and Higher Education for statutory research of the Institute of Geophysics, Polish Academy of Sciences (Grant No 3841/E-41/S/2019). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Biometeorology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atmospheric electricity phenomena es_ES
dc.subject Atmospheric electric field es_ES
dc.subject Biological effects es_ES
dc.subject Biometeorological profile es_ES
dc.subject Glossary es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Glossary on atmospheric electricity and its effects on biology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00484-020-02013-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MNiSW//3841%2FE-41%2FS%2F2019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Fdez-Arroyabe, P.; Kourtidis, K.; Haldoupis, C.; Savoska, S.; Matthews, J.; Mir, LM.; Kassomenos, P.... (2021). Glossary on atmospheric electricity and its effects on biology. International Journal of Biometeorology. 65(1):5-29. https://doi.org/10.1007/s00484-020-02013-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00484-020-02013-9 es_ES
dc.description.upvformatpinicio 5 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33025117 es_ES
dc.relation.pasarela S\423580 es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministry of Science and Higher Education, Polonia es_ES
dc.description.references Adrovic F (2012) Editor, Gamma radiation, IntechOpen. es_ES
dc.description.references Alberts B (2014). Molecular biology of the cell (6th ed.). New York. ISBN 9780815344322 es_ES
dc.description.references Ambus Per, (2015) Sophie Zechmeister-Boltenstern Sophie, in Biology of the Nitrogen Cycle, 2007.G.P. Robertson1, P.M. Groffman2, in Soil Microbiology, Ecology and Biochemistry (4th Edition) es_ES
dc.description.references Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, Denzi A, Marino C, d’Inzeo G (2013) Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microwave Theory Techn 61(5):2031–2045. https://doi.org/10.1109/TMTT.2013.2250298 es_ES
dc.description.references Arnold F (1986) Atmospheric ions. Stud Environ Sci 26(103-133):135–142 es_ES
dc.description.references Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106(2):1741 es_ES
dc.description.references Bazilevskaya G (2000) Observations of variability in cosmic rays. Space Sci Rev 94:25–38. https://doi.org/10.1023/A:1026721912992 es_ES
dc.description.references Benson D, Markovich A, Lee SH (2010) Ternary homogeneous nucleation of H2SO, NH3, H2O under conditions relevant to the lower troposphere. Atmos Chem Phys 10(9):22395–22414 es_ES
dc.description.references Bonnafous P et al (1999) The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilization of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim et BiophysActa (BBA) - Biomembr 1461:123–134. https://doi.org/10.1016/S0005-2736(99)00154-6 es_ES
dc.description.references Bór (2013) Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009. J Atmos Sol Terr Phys 92:151–177. https://doi.org/10.1016/j.jastp.2012.10.008 es_ES
dc.description.references Bowker GE, Crenshaw HC (2007) Electrostatic forces in wind-pollination, Part 1: Measurement of the electrostatic charge on pollen. Atmos Environ 41(8):1587–1595 es_ES
dc.description.references Buonsanto MJ (1999) Ionospheric storms–a review. Space Sci Rev 88:563–601 es_ES
dc.description.references Chafai DE et al (2019) Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater 31:e1903636 es_ES
dc.description.references Chalmers JA (1949) Atmospheric electricity, 1st edn. Pergamon Press, Oxford es_ES
dc.description.references Chilingarian A, Soghomonyan S, Khanikyanc Y, Pokhsraryan D (2019) On the origin of particle fluxes from thunderclouds. Astropart Phys 105:54–62 es_ES
dc.description.references Cifra M, Pospíšil P (2014) Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B Biol 139:2–10. https://doi.org/10.1016/j.jphotobiol.2014.02.009 es_ES
dc.description.references Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105(3):223–246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003 es_ES
dc.description.references Cifra M, Apollonio F, Liberti M et al (2020) Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01885-1 es_ES
dc.description.references Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69 es_ES
dc.description.references Clarke D, Morley E, Robert D (2017) The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A 203(9):737–748 es_ES
dc.description.references Corbet SA, Beament J, Eisikowitch D (1982) Are electrostatic forces involved in pollen transfer? Plant Cell Environ 5(2):125–129 es_ES
dc.description.references Daintith and Gould (2006) The facts on file dictionary of astronomy/edited by John Daintith, William Gould New York, NY: Facts on File, c1994. Call # 520.3 FA. “Cosmic rays are a global source of ionization distributed through the Galaxy.” Source: Dalgarno, A. (2006), Interstel es_ES
dc.description.references Dal Maso M, Kulmala M, Lehtinen KEJ, Mäkelä JM, Aalto P, O’Dowd CD (2002) Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J Geophys Res 107. https://doi.org/10.1029/2001jd00 es_ES
dc.description.references Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ Res 1:2005 es_ES
dc.description.references Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrost 62(4):277–290. https://doi.org/10.1016/j.elstat.2004.05.005 es_ES
dc.description.references Djafer D, Irbah A (2013) Estimation of atmospheric turbidity over Ghardaïa city. Atmos Res, Elsevier 128:76–84. https://doi.org/10.1016/j.atmosres.2013.03.009ff.ffhal-00801475f es_ES
dc.description.references Dusenbery DB (1992) Sensory ecology. W.H. Freeman, New York ISBN 0-7167-2333-6 es_ES
dc.description.references EC-GPHSW (2013) European Commission. Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work-guidance for employers and health and safety practitioners. Brussels es_ES
dc.description.references Encyclopedia Britannica, (2019) https://www.britannica.com/ Accessed 1.10.2019 es_ES
dc.description.references European Committee for Standardization (1993) CEN-EN 481-workplace atmospheres-size fraction definitions for measurement of airborne particles. es_ES
dc.description.references Fernandez de Arroyabe P, Lecha Estela L, Schimt F (2017) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 2018:733–740. https://doi.org/10.1007/s00484-017-1398-x es_ES
dc.description.references Feynman R (1970) The Feynman lectures on physics Vol II Addison-Wesley Publishing Longman. es_ES
dc.description.references Finlay CC et al (2010) International Geomagnetic Reference Field: the eleventh generation. Geophys J Int 183(3):1216–1230 es_ES
dc.description.references Fishman GJ, Bhat PN, Mallozzi R, Horack JM, Koshut T, Kouveliotou C, Pendleton GN, Meegan CA, Wilson RB, Paciesas WS, Goodman SJ, Christian HJ (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163):1313–1316. https://doi.org/10.1126/science.264.5163.1313 es_ES
dc.description.references Forbush SE (1937) On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys Rev 51(12):1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3 es_ES
dc.description.references Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51 es_ES
dc.description.references Freeman S, Quilin K, Allison L (1965) Biological science 5th edition. (2013) Pearson Publishing.p.1059. es_ES
dc.description.references Fullekrug, M., and M. J. Rycroft (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58(9):1193–1196 es_ES
dc.description.references Fundamentals of Electronics (1965) Volume 1b — Basic Electricity - Alternating Current. Bureau of Naval Personnel. 1965. p. 197 es_ES
dc.description.references GFCS. WMO-WHO Global Framework for Climate Services (GFCS) (2020) http://www.wmo.int/gfcs/about-gfcs, Accessed 1.10.2019 es_ES
dc.description.references Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space 99(A4):5771–5792. https://doi.org/10.1029/93JA02867 es_ES
dc.description.references GSFT - Glossary for the Solar Flare Theory (n.d.) web site by Gordon Holman and Sarah Benedict. Responsible NASA Official: Gordon D. Holman, Heliophysics Science Division, NASA/Goddard Space Flight Center, Solar Physics Laboratory / Code 671, Gordon.D.Holman@nasa.gov es_ES
dc.description.references Gueymard C (1998) Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach. J Appl Meteorol 37:414–435 es_ES
dc.description.references Gunn R (1954) Diffusion charging of atmospheric droplets by ions, and the resulting combination coefficients. J Atmos Sci 11(5):339–347 es_ES
dc.description.references Haldoupis C (2012) Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci Rev 168:441–461 es_ES
dc.description.references Handbook of Biological Effects of Electromagnetic Fields (third), (2007) Edited by Frank S. Barnes and Ben Greenebaum, 2007, CRC Press Taylor & Francis Group Boca Raton 33487-32742 es_ES
dc.description.references Hargreaves JK (1992) The solar-terrestrial environment. Cambridge Atmospheric and Space Science Series. Cambridge University Press es_ES
dc.description.references Harrison RG (2000) Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci Rev 94(1):381–396 es_ES
dc.description.references Harrison RG (2013) The Carnegie curve. Surv Geophys 34:209–232. https://doi.org/10.1007/s10712-012-9210-2 es_ES
dc.description.references Harrison RG, Nicoll KA (2018) Fair weather criteria for atmospheric electricity measurements. J Atmos Sol Terr Phys 179:239–250 es_ES
dc.description.references Harrison RG, Tammet H (2008) Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci Rev 137:107–118. https://doi.org/10.1007/s11214-008-9356-x es_ES
dc.description.references Hayakawa M, Hattori K, Ando Y (2004) Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater 124(2004):72–79 es_ES
dc.description.references Hekstra DR et al (2016) Electric-field-stimulated protein mechanics. Nature 540.7633(2016):400 es_ES
dc.description.references Hinds W C (1982, 1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York. es_ES
dc.description.references Hirsikko A, Nieminen T, Gagné S, Lehtipalo K, Manninen HE, Ehn M, Hõrrak U, Kerminen VM, Laakso L, McMurry PH, Mirme A, Mirme S, Petäjä T, Tammet H, Vakkari V, Vana M, Kulmala M (2011) Atmospheric ions and nucleation: a review of observations. Atmos Chem Phys 11:767–798. https://doi.org/10.5194/acp-11-767-2011 es_ES
dc.description.references Hodgkin AL, Huxley AF (1952) Aquantitative description of membrane current and its application to conduction and excitation in nerves. J Physiol 117(4):500–544 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/ es_ES
dc.description.references Hoppel WA (1969) Application of three-body recombination and attachment coefficients to tropospheric ions. Pure Appl Geophys 75:158–166 es_ES
dc.description.references Hörrak U, Salm J, Tammet H (2000) Statistical characterization of air ion mobility spectra at Tahkuse Observatory: classification of air ions. J Geophys Res 105(D7):9291–9302 es_ES
dc.description.references Hundhausen AJ (1995) The solar wind. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, pp 91–198 es_ES
dc.description.references Hunting, E.R., Matthews, J., de Arróyabe Hernáez, P.F., England, S.J., Kourtidis, K., Koh, K., Nicoll, K., Harrison, R.G., Manser, K., Price, C. and Dragovic, S., (2020). Challenges in coupling atmospheric electricity with biological systems. u, pp.1-14. https://doi.org/10.1007/s00484-020-01960-7 es_ES
dc.description.references ICRP (1994) International Commission on Radiological Protection Human respiratory tract model for radiological protection, Annual 66. es_ES
dc.description.references Imyanitov IM (1957) Instruments and methods for the study of atmospheric electricity (in Russian), Gostekhizdat. es_ES
dc.description.references Imyanitov IM, Chubarina EV (1967) Electricity of free atmosphere, (Gidrometeoizdat, 1965) NASA/NSF Israel Program for Scientific Translations. es_ES
dc.description.references Israël H (1971) Atmospheric electricity, Vol. I, Fundamentals, conductivity, ions, Israel Program for Scientific Translations, Jerusalem es_ES
dc.description.references Israël H (1973) Atmospheric electricity, Vol. II, Fields, charges, currents, Israel Program for Scientific Translations, Jerusalem. es_ES
dc.description.references James MR, Wilson L, Lane SJ, Gilbert JS, Mather TA, Harrison RG, Martin RS (2008) Electrical charging of volcanic plumes, Space Sci. Rev. 137:399–418. https://doi.org/10.1007/s11214-008-9362-z es_ES
dc.description.references Järvinen A, Aitomaa M, Rostedt A, Keskinen J, Yli-Ojanperä J (2014) Calibration of the new electrical low pressure impactor (ELPI+). J Aerosol Sci 69:150–159. https://doi.org/10.1016/j.jaerosci.2013.12.006 es_ES
dc.description.references Kathren, RL (1998) NORM sources and their origins. Applied Radiation and Isotopes, 49(3):149–168. es_ES
dc.description.references Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega IK, Wagner R, Adamov A, Amorim A, Bernhammer AK, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan RC, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle CR, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, Kürten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan AP, Pringle K, Rap A, Richards NAD, Riipinen I, Rissanen MP, Rondo L, Sarnela N, Schobesberger S, Scott CE, Seinfeld JH, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, Tomé A, Virtanen A, Vogel AL, Wagner AC, Wagner PE, Weingartner E, Wimmer D, Winkler PM, Ye P, Zhang X, Hansel A, Dommen J, Donahue NM, Worsnop DR, Baltensperger U, Kulmala M, Carslaw KS, Curtius J (2016) Ion-induced nucleation of pure biogenic particles. Nature 533:521–526. https://doi.org/10.1038/nature17953 es_ES
dc.description.references Kivelson MG, Russel ZT (1995) Introduction to space physics. Cambridge University Press, Cambridge es_ES
dc.description.references Kulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley, New York es_ES
dc.description.references Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PP, Junninen H, Paasonen P, Riipinen I, Lehtinen KE, Laaksonen A, Kerminen VM (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7(9):1651–1667. https://doi.org/10.1038/nprot.2012.091https://www.nature.com/articles/nprot.2012.091 es_ES
dc.description.references Kulmala M, Petaja T, Ehn M, Thornton J, Sipila M, Worsnop DR, Kerminen VM (2014) Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu Rev Phys Chem 65:21–37 es_ES
dc.description.references L’Annunziata MF (2016) Radioactivity, Elsevier es_ES
dc.description.references Laakso L, Anttila T, Lehtinen KEJ, Aalto PP, Kulmala M, Hõrrak U, Paatero J, Hanke M, Arnold F (2004) Kinetic nucleation and ions in boreal forest particle formation events. Atmos Chem Phys 4:2353–2366. https://doi.org/10.5194/acp-4-2353-2004 es_ES
dc.description.references Lee J-H, Jang A, Bhadri PR, Myers RR, Timmons W, Beyette FR, Papautsky I (2006) Fabrication of microelectrode arrays for in situ sensing of oxidation reduction potentials. Sensors Actuators B 115:220–226. es_ES
dc.description.references Liberti M, Apollonio F, Merla C, D’Inzeo G (2009) Microdosimetry in the microwave range: a quantitative assessment at single cell level. IEEE Antennas Wireless Propagation Lett 8(5170009):865–868 es_ES
dc.description.references Lidén G (2011) The European Commission tries to define nanomaterials. Ann OccupHyg 55:1–5. https://doi.org/10.1093/annhyg/meq092 es_ES
dc.description.references Liu KN (2002) An introduction to atmospheric radiation. Academic Press, Cambridge es_ES
dc.description.references Love JJ, Bedrosian PA (2019) Extreme-event geoelectric hazard maps. In: Buzulukova N (ed) Extreme events in geospace-origins, predictability, and consequences. Elsevier, Amsterdam, pp 209–230 es_ES
dc.description.references Lui ATY (1992) Magnetospheric substorms. Physics Fluids B: Plasma Physics 4:2257–2263. https://doi.org/10.1063/1.860194 es_ES
dc.description.references Maccarrone M, Fantini C, Finazzi Agrò A, Rosato N (1998) Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation. Biochim et BiophysActa (BBA) - Biomembr 1414:43–50. https://doi.org/10.1016/S0005-2736(98)00150-3 es_ES
dc.description.references MacGorman D, Rust WD (1998) The electrical nature of storms. Oxford University Press, New York es_ES
dc.description.references Mach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201. https://doi.org/10.1029/2010JD014462 es_ES
dc.description.references Magono C (1980) Thunderstorms. Elsevier, Amsterdam es_ES
dc.description.references Markson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88(2):223–242. https://doi.org/10.1175/BAMS-88-2-223 es_ES
dc.description.references Marracino P et al (2019) Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 9.1(2019):10477 es_ES
dc.description.references Mathews JD (1998) Sporadic E: current views and recent progress. J Atmos Sol-Terr Phys 60:413 es_ES
dc.description.references McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiol, Biochem and Pharma, 6th edn. Pergamon Press, Oxford es_ES
dc.description.references McPherron RL (1995) Magnetospheric dynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 400–457 es_ES
dc.description.references Mirabel PJ, Jaecker-Voirol A (1988) Binary homogeneous nucleation. In: Wagner PE, Vali G (eds) Atmospheric aerosols and nucleation. Lecture Notes in Physics, 309th edn. Springer, Berlin es_ES
dc.description.references Mirme A, Tamm E, Mordas G, Vana M, Uin J, Mirme S, Bernotas T, Laakso L, Hirsikko A, Kulmala M (2007) A wide-range multi-channel air ion spectrometer. Boreal Environ Res 12:247–264 es_ES
dc.description.references Miroshnichenko L (2015) Solar cosmic rays: fundamentals and applications. Springer, Berlin es_ES
dc.description.references Mitsutake G, Otsuka K, Hayakawa M, Sekiguchi M, Corndlissen G, Halberg F (2005) Does Schumann resonance affect our blood pressure? Biomed Pharmacother 59:S10–S14 es_ES
dc.description.references Munn RE (1987) Bioclimatology. In: Climatology. Encyclopedia of Earth Science. Springer, Boston. https://doi.org/10.1007/0-387-30749-4_26 es_ES
dc.description.references NASA (2020) https://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather.html Accessed in February 2020 es_ES
dc.description.references Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C-F, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. https://doi.org/10.1007/s10712-008-9043-1 es_ES
dc.description.references Nickolaenko AP, Hayakawa M, Hobara Y, (2010) Q-Bursts: natural ELF radio transients, Surv Geophys, Volume 31 4:409-425. https://doi.org/10.1007/s10712010-9096-9 es_ES
dc.description.references Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth–ionosphere cavity. Kluwer Academic Publishers, Dordrecht es_ES
dc.description.references Odzimek A, Baranski P, Kubicki M, Jasinkiewicz D (2018) Electrical signatures of nimbostratus and stratus clouds in ground-level vertical atmospheric electric field and current density at mid-latitude station Swider, Poland. Atmos Res 109C:188–203. https://doi.org/10.1016/j.atmosres.2018.03.018 es_ES
dc.description.references Ogawa T, Tanaka Y, Yasuhara M, Fraser-Smith AC, Gendrin R (1967) Worldwide simultaneity of occurrence of a Q-type burst in the Schumann resonance frequency range. J Geomagn Geoelectr 19:377–384 es_ES
dc.description.references Ouzounov D, Pulinets S, Hattori K, Taylor P (2018) Pre-earthquake processes: a multidisciplinary approach to earthquake prediction studies. American Geophysical Union, Washington es_ES
dc.description.references Palmer SJ, Rycroft MJ, Cermak M (2006) Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27:557–595 es_ES
dc.description.references Parkinson WL, Torreson OW (1931) The diurnal variation of the electric potential of the atmosphere over the oceans. Union Géodésique et Géophysique Internationale Bulletin 8:340–345 es_ES
dc.description.references Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms, and effects, Space Sci. Rev. 168:475–516. https://doi.org/10.1007/s11214-011-9813-9 es_ES
dc.description.references Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44, no. 46 (2005): 7520–40. es_ES
dc.description.references Price C (2016) ELF Electromagnetic waves from lightning: the Schumann resonances. Atmosphere 7(9):116. https://doi.org/10.3390/atmos7090116 es_ES
dc.description.references Price C, Williams E, Elhalel G, & Sentman D (2020). Natural ELF fields in the atmosphere and in living organisms. In J Biometeorol 1-8. es_ES
dc.description.references Priest ER (1995) Sun and its magnetohydrodynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 58–90 es_ES
dc.description.references Probstein RF, Hicks R (1993) Removal of contaminants from soils by electric fields. Science 260(5107):498–503 es_ES
dc.description.references Purcell and Morin (2013) Harvard University. Electricity and Magnetism, 820 pages (3rd). Cambridge University Press, New York. ISBN 978-1-107-01402-2. es_ES
dc.description.references Rakov VA, Uman MA (2002) Lightning: physics and effects. Press, Cambridge University es_ES
dc.description.references Reiter R (1985) Fields, currents and aerosols in the lower atmosphere, Steinkopff Verlag, NSF Translation TT 76-52030 es_ES
dc.description.references Repacholi, Michael HB, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20(3):133–160 es_ES
dc.description.references Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5) es_ES
dc.description.references Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31(Pt 6):1095–1105. https://doi.org/10.1042/BST0311095 es_ES
dc.description.references Rishbeth H, Garriot OK (1969), Introduction to ionospheric physics, Academic Press. es_ES
dc.description.references Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317–336. https://doi.org/10.1029/1999RG900006 es_ES
dc.description.references Rogers RR (1979) A short course in cloud physics. Press, Pergamon es_ES
dc.description.references Ross E, Chaplin WJ (2019) The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol Phys 294:8 es_ES
dc.description.references Ruggeri F, Zosel F, Mutter N, Różycka M, Wojtas M, Ożyhar A, Schuler B, Krishnan M (2017) Single-molecule electrometry. Nat Nanotechnol 12(5):488–495 es_ES
dc.description.references Runge J, Balasis G, Daglis IA, Papadimitriou C, Donner RV (2018) Common solar wind drivers behind magnetic storm-magnetospheric substorm dependency. Nat Sci Rep 8:16987. https://doi.org/10.1038/s41598-018-35250-5 es_ES
dc.description.references Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:A00E37. https://doi.org/10.1029/2009JA014758 es_ES
dc.description.references Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol-Terr Phys 62:1563–1576. https://doi.org/10.1016/S1364-6826(00)00112-7 es_ES
dc.description.references Schonland BFJ (1950) The flight of thunderbolts. 44–47. es_ES
dc.description.references Schumann, WO (1952) Z. Naturforsch. A, 7, 149-154, doi: https://doi.org/10.1515/zna-1952-0202. es_ES
dc.description.references Schwan HP (1999) Bioelectromagnetics, Carl Durney, and dosimetry: Some historical remarks. Bioelectromagnetics 20:3–8 es_ES
dc.description.references Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change, 3rd ed. John Wiley & Sons es_ES
dc.description.references Sentman DD (1995) Schumann resonances. In: Volland H (ed) Handbook of atmospheric electrodynamics, 1st edn. CRC Press, London, pp 267–296 es_ES
dc.description.references Shibata K, Magara T (2011) Solar flares: magnetohydrodynamic processes. Living Rev Sol Phys 8:6. https://doi.org/10.12942/lrsp-2011-6 es_ES
dc.description.references Shuman NS, Hunton DE, Viggiano AA (2015) Ambient and modified atmospheric ion chemistry: from top to bottom. Chem Rev 115:4542–4570. https://doi.org/10.1021/cr5003479 es_ES
dc.description.references Singh D, Gopalakrishnan V, Singh RP et al (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110 es_ES
dc.description.references Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307:1085–1088. https://doi.org/10.1126/science.1107466 es_ES
dc.description.references Sollazzo A, Brzozowska B, Cheng L, Undholm L, Haghdoost S, Scherthan H, Wojcik A (2017) Alpha particles and X rays interact in inducing DNA damage in U2OS cells. Radiat Res 188:400–411 es_ES
dc.description.references Sontag ES, Borgnakke C, Van Wylen GJ (2003) Fundamentals of thermodynamics, 6th Edition, John Wiley & Sons es_ES
dc.description.references Soula S et al (2011) Gigantic jets produced by an isolated tropical thunderstorm near Reunion Island. J Geophys Res 116(D19103):14. https://doi.org/10.1029/2010JD015581 es_ES
dc.description.references Stix M (2002) The sun. An introduction, Springer. es_ES
dc.description.references Tandberg-Hansen E (2009) The physics of solar flares. Cambridge University Press, Cambridge es_ES
dc.description.references Tsong TY, Astumian RD (1986) 863—absorption and con-version of electric field energy by membrane bound ATPases. Bioelectrochem Bioenergetics 15, no 3(1986):457–476 es_ES
dc.description.references Uman M (2008) The art and science of lightning protection, Cambridge University Press, Cambridge es_ES
dc.description.references UNSCEAR (2016) United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR Report, Report to the General Assembly, Annex B. es_ES
dc.description.references USGS (2020) Geological Survey Earthquake Hazards Program https://earthquake.usgs.gov/. (Accessed in 2020) es_ES
dc.description.references Vallero DA (2014) Fundamentals of air pollution, Academic Press es_ES
dc.description.references Volland H (1984) Atmospheric electrodynamics, physics and chemistry in space, Springer- Verlag. es_ES
dc.description.references Volland H (1995) Handbook of Atmospheric Electrodynamics. Editor CRC Press Revivals, 2017 es_ES
dc.description.references Vorenhout M, van der Geest HG, van Marum D, Wattel K, Eijsackers HJP (2004) Automated and continuous redox potential measurements in soil. J Environ Qual 33(4):1562–1567. https://doi.org/10.2134/jeq2004.1562 es_ES
dc.description.references Vorenhout M, van der Geest HG, Hunting ER (2011) An improved datalogger and novel probes for continuous redox measurements in wetlands. Int J Environ Anal Chem 91(7-8):801–810 es_ES
dc.description.references Wahlin L (1986) Atmospheric electrostatics, Research Studies Press. es_ES
dc.description.references Wallace JM and Hobbs PV (2006) Atmospheric Science: an Introductory Survey, Elsevier es_ES
dc.description.references Wever R (1973) Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol 17(3):227–232 es_ES
dc.description.references White D (1999) The physiology and biochemistry of prokaryotes (2nd ed.). Oxford University Press.ISBN 978-0-19-512579-5. es_ES
dc.description.references Whitehead JD (1989) Recent work on midlatitude and equatorial sporadic E. J Atmos Sol-Terr Phys 51:401 es_ES
dc.description.references Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389 es_ES
dc.description.references Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa AM, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren JA, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings SG, O'Dowd CD, Marinoni A, Horn HG, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao CS, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S (2012) Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Tech 5:657–685. https://doi.org/10.5194/amt-5-657-2012 es_ES
dc.description.references Williams E, Mareev E (2014) Recent progress on the global electrical circuit. Atmos Res 135-136:208–227. https://doi.org/10.1016/j.atmosres.2013.05.015 es_ES
dc.description.references Wilson CTR (1906) On the measurements of the earth-air current and on the origin of atmospheric electricity. Proc Camb Philol Soc 13:363–382 es_ES
dc.description.references Wilson CTR (1921) Investigation on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc London Series A 211:73–115 es_ES
dc.description.references Winzor DJ (2005) Protein charge determination. Curr Protocols Protein Sci 41(1):2–10 es_ES
dc.description.references WMO (2017) International cloud atlas, manual on the observation of clouds and other meteors, WMO-No. 407 WMO, Geneva. https://cloudatlas.wmo.int/clouds-genera-cumulonimbus.html es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem