- -

Thinning decreased soil respiration differently in two dryland Mediterranean forests with contrasted soil temperature and humidity regimes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thinning decreased soil respiration differently in two dryland Mediterranean forests with contrasted soil temperature and humidity regimes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bautista, Inmaculada es_ES
dc.contributor.author Lidón, Antonio es_ES
dc.contributor.author Lull, Cristina es_ES
dc.contributor.author Gonzalez-Sanchis, Maria es_ES
dc.contributor.author Campo García, Antonio Dámaso Del es_ES
dc.date.accessioned 2022-01-28T07:41:02Z
dc.date.available 2022-01-28T07:41:02Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 1612-4669 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180325
dc.description.abstract [EN] The effects of a thinning treatment on soil respiration (Rs) were analysed in two dryland forest types with a Mediterranean climate in east Spain: a dry subhumid holm oak forest (Quercus ilex subsp. ballota) in La Hunde (HU); a semiarid postfire regenerated Aleppo pine (Pinus halepensis) forest in Sierra Calderona (CA). Two twin plots were established at each site: one was thinned (T) and the other was the control (C). Rs, soil humidity and temperature were measured regularly in the field at nine points per plot distributed into three blocks along the slope for 3 years at HU and for 2 years at CA after forest treatment. Soil heterotrophic activity was measured in laboratory on soil samples obtained bimonthly from December 2012 to June 2013 at the HU site. Seasonal Rs distribution gave low values in winter, began to increase in spring before lowering as soil dried in summer. This scenario indicates that with a semiarid climate, soil respiration is controlled by both soil humidity and soil temperature. Throughout the study period, the mean Rs value in the HU C plot was 13% higher than at HU T, and was 26% higher at CA C than the corresponding CA T plot value, being the differences significantly higher in control plots during active growing periods. Soil microclimatic variables explain the biggest proportion of variability for Rs: soil temperature explained 24.1% of total variability for Rs in the dry subhumid forest; soil humidity accounted for 24.6% of total variability for Rs in the semiarid forest. As Mediterranean climates are characterised by wide interannual variability, Rs showed considerable variability over the years, which can mask the effect caused by thinning treatment. es_ES
dc.description.sponsorship This study was supported by research projects Hydrological characterisation of forest structures on a plot scale for adaptive management (CGL2011-28776-C02-02) and SILWAMED (CGL2014-58127-C3-2) funded by the Spanish Ministry of Science and Innovation and FEDER funds. CEHYRFO-MED (CGL201786839-C3-2-R), RESILIENT-FORESTS (LIFE17 CCA/ES/000063) and SilvAdapt. net (RED2018-102719-T) are also acknowledged. The authors are grateful to the Valencia Regional Government, VAERSA, ACCIONA and the "Sierra Calderona" Natural Park for their support in allowing us to use experimental forests and for their assistance in fieldwork. We also thank Rafael Herrera from the Centro de Ecologia, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela, and the anonymous reviewers for critically reviewing the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof European Journal of Forest Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Soil climate es_ES
dc.subject Soil hydrology es_ES
dc.subject Forest management es_ES
dc.subject Topography es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Thinning decreased soil respiration differently in two dryland Mediterranean forests with contrasted soil temperature and humidity regimes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10342-021-01413-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-2-R/ES/DESARROLLO DE CONCEPTOS Y CRITERIOS PARA UNA GESTION FORESTAL DE BASE ECO-HIDROLOGICA COMO MEDIDA DE ADAPTACION AL CAMBIO GLOBAL (SILWAMED)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINISTERIO DE ECONOMIA Y EMPRESA//CGL2011-28776-C02-02//CARACTERIZACION HIDROLOGICA DE LA ESTRUCTURA FORESTAL A ESCALA PARCELA PARA LA IMPLEMENTACION DE SILVICULTURA ADAPTATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CGL2017-86839-C3-2-R-AR//INCORPORACION DE CRITERIOS ECO-HIDROLOGICOS Y DE RESILENCIA FRENTE A PERTURBACIONES CLIMATICAS Y DEL FUEGO EN LA PLANIFICACION Y GESTION FORESTAL DE CUENCAS MEDITERRANEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//LIFE17 CCA%2FES%2F000063//Coupling water, fire and climate resilience with biomass production in Forestry to adapt watersheds to climate change/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RED2018-102719-T//RED ESPAÑOLA DE SELVICULTURA ADAPTATIVA AL CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Bautista, I.; Lidón, A.; Lull, C.; Gonzalez-Sanchis, M.; Campo García, ADD. (2021). Thinning decreased soil respiration differently in two dryland Mediterranean forests with contrasted soil temperature and humidity regimes. European Journal of Forest Research. 140(6):1469-1485. https://doi.org/10.1007/s10342-021-01413-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10342-021-01413-9 es_ES
dc.description.upvformatpinicio 1469 es_ES
dc.description.upvformatpfin 1485 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 140 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\446462 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder European Commission
dc.description.references Ǻgren GI, Knecht M (2001) Simulation of soil carbon and nutrient development under Pinus Sylvestris and Pinus contorta. Forest Ecol Manag 141:117–129. https://doi.org/10.1016/S0378-1127(00)00495-3 es_ES
dc.description.references Akburak S, Makineci E. (2016). Thinning effects on soil and microbial respiration in a coppice-originated Carpinus betulus L. stand in Turkey. Iforest. 9 783. https://doi.org/10.3832/ifor1810-009 es_ES
dc.description.references Almagro M, López J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605. https://doi.org/10.1016/j.soilbio.2008.12.021 es_ES
dc.description.references Arias-Navarro C, Díaz-Pinés E, Klatt S, Brandt P, Rufino MC, Butterbach-Bahl K, Verchot LV (2017) Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenia. J Geophys Res Biogeosci 122:514–527. https://doi.org/10.1002/2016JG003667 es_ES
dc.description.references Bautista I, Pabón CA, Lull C, González-Sanchis MC, Lidón A, del Campo AD (2015) Efectos de la gestión forestal en los flujos de nutrientes asociados al ciclo hidrológico en un bosque mediterráneo de Quercus ilex. Cuad Soc Esp Cienc for 41:343–354. https://doi.org/10.31167/csef.v0i41.17400 es_ES
dc.description.references Boerner REJ (1983) Nutrient dynamics of vegetation and detritus following two intesities of fire in the New Jersey pine barrens. Oecologia 59:129–134 es_ES
dc.description.references Bolat Ĭ (2014) The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. Eur J for Res 133:131–139. https://doi.org/10.1007/s10342-013-0752-8 es_ES
dc.description.references Cabon A, Mouillot F, Lempereur M, Ourcival JM, Simioni G, Limousin JM (2018) Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. Forest Ecol Manag 409:333–342. https://doi.org/10.1016/j.foreco.2017.11.030 es_ES
dc.description.references Campbell J, Alberti G, Martin J, Law BE (2009) Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Forest Ecol Manag 257:453–463. https://doi.org/10.1016/j.foreco.2008.09.021 es_ES
dc.description.references Chang CT, Sperlich D, Sabaté S, Sánchez-Costa E, Cotillas M, Espelta JM, Gracia C (2016) Mitigating the stress of drought on soil respiration by selective thinning: Contrasting effects of drought on soil respiration of two oak species in a Mediterranean forest. Forests 7:263. https://doi.org/10.3390/f7110263 es_ES
dc.description.references Cheng X, Kang F, Han H, Liu H, Zhang Y (2015) Effect of thinning on partitioned soil respiration in a young Pinus tabulaeformis plantation during growing season. Agric for Meteorol 214–215:473–482. https://doi.org/10.1016/j.agrformet.2015.09.016 es_ES
dc.description.references Curtin D, Beare MH, Hernandez-Ramirez G (2012) Temperature and humidity effects on microbial biomass and soil organic matter mineralization. Soil Sci Soc Am J 76:2055–2067. https://doi.org/10.2136/sssaj2012.0011 es_ES
dc.description.references D’Amato AW, Bradford JB, Fraver S, Palik BJ (2013) Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol Appl 23:1735–1742. https://doi.org/10.1890/13-0677.1 es_ES
dc.description.references Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514 es_ES
dc.description.references Davidson EA, Richardson AD, Savage KE, Hollinger DY (2006) A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce–dominated forest. Global Change Biol 12:230–239. https://doi.org/10.1111/j.1365-2486.2005.01062.x es_ES
dc.description.references del Campo AD, González–Sanchis M, Lidón A, García–Prats A, Lull C, Bautista I, Ruíz-Pérez G, Francés F (2017) Ecohydrological-based forest management in semi-arid climate. In: Krecek J, Haigh M, Hofer T, Kubin E, Promper C (eds) Ecosystem Services of Headwater Catchments. Springer. 45–57. https://doi.org/10.1007/978-3-319-57946-7_6 es_ES
dc.description.references del Campo AD, González-Sanchis M, Lidón A, Ceacero C, García-Prats A (2018) Rainfall partitioning in two low-biomass semiarid forest: impact of climate and forest structure on the effectiveness of water oriented treatments. J Hydrol 565:74–86. https://doi.org/10.1016/j.jhydrol.2018.08.013 es_ES
dc.description.references del Campo AD, González-Sanchis M, Garcia-Prats A, Ceacero CJ, Lull C (2019) The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agric for Meteorol 264:266–282. https://doi.org/10.1016/j.agrformet.2018.10.016 es_ES
dc.description.references Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190. https://doi.org/10.1126/science.263.5144.185 es_ES
dc.description.references Ducrey M, Turrel M (1992) Influence of cutting methods and dates on stump sprouting in Holm oak (Quercus ilex L) coppice. Ann for Sci 49:449–464. https://doi.org/10.1051/forest:19920502 es_ES
dc.description.references Fang Y, Gundersen P, Zhang W, Zhou G, Christiansen JR, Mo J, Dong S, Zhang T (2009) Soil–atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant Soil 319:37–48. https://doi.org/10.1007/s11104-008-9847-2 es_ES
dc.description.references Fernández-Alonso MJ, Diaz-Pines E, Ortiz C, Rubio A (2018) Disentangling the effects of tree species and microclimate on heterotrophic and autotrophic soil respiration in a Mediterranean ecotone forest. Forest Ecol Manag 430:533–544. https://doi.org/10.1016/j.foreco.2018.08.046 es_ES
dc.description.references Goldin SR, Hutchinson MF (2013) Coarse woody debris modifies surface soils of degraded temperate eucalypt woodlands. Plant Soil 370:461–469. https://doi.org/10.1007/s11104-013-1642-z es_ES
dc.description.references Hanson PJ, Edwards NT, Gaeten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: and review of methods and observations. Biogeochemistry 48:115–146. https://doi.org/10.1023/A:1006244819642 es_ES
dc.description.references Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792. https://doi.org/10.1038/35081058 es_ES
dc.description.references Inclán R, Uribe C, De La Torre D, Sánchez DM, Clavero MA, Fernández AM, Morante R, Cardeña A, Fernández M, Rubio A (2010) Carbon dioxide fluxes across the Sierra de Guadarrama, Spain. Eur J for Res 129:93–100. https://doi.org/10.1007/s10342-008-0247-1 es_ES
dc.description.references Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. https://doi.org/10.1016/j.geoderma.2006.09.003 es_ES
dc.description.references Jandl R, Spathelf P, Bolte A, Prescott CE (2019) Forest adaptation to climate change—is non-management an option? Ann for Sci 76:48. https://doi.org/10.1007/s13595-019-0827-x es_ES
dc.description.references Lado-Monserrat L, Lull C, Bautista I, Lidón A, Herrera R (2014) Soil humidity increment as a controlling variable of the “Birch effect”. Interactions with the pre-wetting soil humidity and litter addition. Plant Soil 379:21–34. https://doi.org/10.1007/s11104-014-2037-5 es_ES
dc.description.references Lagomarsino A, Mazza G, Agnelli AE, Lorenzetti R, Bartoli C, Viti C, Colombo C, Pastorelli R (2020) Litter fractions and dynamics in a degraded pine forest after thinning treatments. Eur J Forest Res 139:295–310. https://doi.org/10.1007/s10342-019-01245-8 es_ES
dc.description.references Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J, Nair KPR, McBratney AB, de Moraes Sá JC, Schneider J, Zinn YL, Skorupa ALA, Zhang H, Minasny B, Srinivasrao C, Ravindranath NH (2018) The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv 73:145A-152A. https://doi.org/10.2489/jswc.73.6.145A es_ES
dc.description.references Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems Forest Ecol Manag 259: 698–709. https://doi.org/10.1016/j.foreco.2009.09.023 es_ES
dc.description.references Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. https://doi.org/10.2307/2389824 es_ES
dc.description.references López BC, Sabaté S, Gracia CA (2003) Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiol 23:1217–1224. https://doi.org/10.1093/treephys/23.17.1217 es_ES
dc.description.references López-Serrano FR, Rubio E, Dadi T, Moya D, Andrés-Abellán M, García-Morote FA, Martínez-García E (2016) Influences of recovery from wildfire and thinning on soil respiration of a Mediterranean mixed forest. Sci Total Environ 573:1217–1231. https://doi.org/10.1016/j.scitotenv.2016.03.242 es_ES
dc.description.references Lull C, Bautista I, Lidón A, del Campo AD, González-Sanchis M, García-Prats A (2020) Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest. Forest Ecol Manage 464:118088. https://doi.org/10.1016/j.foreco.2020.118088 es_ES
dc.description.references Ma S, Chen J, North M, Erickson HE, Bresee M, Le Moine J (2004) Short-term effects of experimental burning and thinning on soil respiration in an old-growth, mixed-conifer forest. Environ Manag 33:148–159. https://doi.org/10.1007/s00267-003-9125-2 es_ES
dc.description.references Mallik AU, Hu D (1997) Soil respiration following site preparation treatments in boreal mixedwood forest. For Ecol Manag 97:265–275. https://doi.org/10.1016/S0378-1127(97)00067-4 es_ES
dc.description.references MAPA (1994) Métodos oficiales de análisis de suelos y aguas. Ministerio de Agricultura, Pesca y Alimentación, Madrid es_ES
dc.description.references Martin JG, Bolstad PV (2009) Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the lanscape. Soil Biol Biochem 41:530–543. https://doi.org/10.1016/j.soilbio.2008.12.012 es_ES
dc.description.references Martin WKE, Timmer VR (2006) Capturing spatial variability of soil and litter properties in a forest stand by landform segmentation procedures. Geoderma 132:169–181. https://doi.org/10.1016/j.geoderma.2005.05.004 es_ES
dc.description.references Martínez-García E, López-Serrano FR, Dadi T, García-Morote FA, Andrés-Abellán M, Pumpanen J, Rubio E (2017) Medium-term dynamics of soil respiration in a Mediterranean mountain ecosystem: The effects of burn severity, post-fire burnt-wood management, and slope-aspect. Agric for Meteorol 233:195–208. https://doi.org/10.1016/j.agrformet.2016.11.192 es_ES
dc.description.references McElligott KM, Seiler JR, Strahm BD (2017) The impact of water content on sources of heterotrophic soil respiration. Forests 8:299. https://doi.org/10.3390/f8080299 es_ES
dc.description.references Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151. https://doi.org/10.1890/06-1715.1 es_ES
dc.description.references Molina A, del Campo A (2012) The effects of experimental thinning on throughfall and stemflow: a contribution towards hydrology-oriented silviculture in Aleppo pine plantations. For Ecol Manag 269:206–213. https://doi.org/10.1016/j.foreco.2011.12.037 es_ES
dc.description.references Moyano FE, Vasilyeva NA, Bouckaert L, Cook F, Craine JM, Don A, Epron D, Formanek P, Franzluebbers A, Ilstedt U, Katterer T, Orchard V, Reichstein M, Rey A, Ruamps LS, Subke J, Thomsen IK, Chenu C (2012) The moisture response of soil heterotrophic respiration: Interaction with soil properties. Biogeosciences 9:1173–1182. https://doi.org/10.5194/bg-9-1173-2012 es_ES
dc.description.references Nelson, DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Jeeney DR (eds) Methods of soil analysis. Part 2. Chemical and mineralogical properties. American Society of Agronomy, Madison, 9. 539–579 es_ES
dc.description.references Newman GS, Arthur MA, Muller RN (2006) Above–and belowground net primary production in a temperate mixed deciduous forest. Ecosystems 9:317–329. https://doi.org/10.1007/s10021-006-0015-3 es_ES
dc.description.references Ohashi M, Gyokusen K (2007) Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biol Biochem 39:1130–1138. https://doi.org/10.1016/j.soilbio.2006.12.021 es_ES
dc.description.references Ohashi M, Gyokusen K, Saito A (1999) Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. For Ecol Manag 123:105–114. https://doi.org/10.1016/S0378-1127(99)00020-1 es_ES
dc.description.references Olajuyigbe S, Tobin B, Saunders M, Nieuwenhuis M (2012) Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agric for Meteorol 157:86–95. https://doi.org/10.1016/j.agrformet.2012.01.016 es_ES
dc.description.references Olivar J, Bogino S, Rathgeber C, Bonnesoeur V, Bravo F (2014) Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann for Sci 71:395–404. https://doi.org/10.1007/s13595-013-0348-y es_ES
dc.description.references Pang X, Bao W, Zhu B, Cheng W (2013) Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agric for Meteorol 171:57–64. https://doi.org/10.1016/j.agrformet.2012.12.001 es_ES
dc.description.references Peng Y, Thomas SC, Tian D (2008) Forest management and soil respiration: implications for carbon sequestration: Environ. Rev 16:93–111. https://doi.org/10.1139/A08-003 es_ES
dc.description.references Pennock D, Yates T, Braidek J (2008) Soil sampling designs. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2on edn. CRC Press, pp 1–14 es_ES
dc.description.references Puertes C, Lidón A, Echeverría C, Bautista I, González-Sanchis M, del Campo AD, Francés F (2019) Explaining the hydrological behaviour of facultative phreatophytes using a multi-variable and multi-objective modelling approach. J Hydrol 575:395–407. https://doi.org/10.1016/j.jhydrol.2019.05.041 es_ES
dc.description.references R Development Core Team (2017) R version 3.3.3. R Foundation for Statistical Computing. es_ES
dc.description.references Rey A, Pegoraro E, Tedeschi V, de Parri I, Jarvis PG, Valentini R (2003) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8:851–866. https://doi.org/10.1046/j.1365-2486.2002.00521.x es_ES
dc.description.references Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109. https://doi.org/10.1016/S0378-1127(00)00383-2 es_ES
dc.description.references Spears JDH, Lajtha K (2004) The imprint of coarse woody debris on soil chemistry in the western Oregon Cascades. Biogeochemistry 71:163–175. https://doi.org/10.1007/s10533-004-6395-6 es_ES
dc.description.references Striegl RJ, Wickland KP (1998) Effects of a clear-cut harvest on soil respiration in a jack pine–lichen woodland. Can J for Res 28:534–539. https://doi.org/10.1139/x98-023 es_ES
dc.description.references Tang J, Misson L, Gerhenson A, Cheng W, Goldstein AH (2005a) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agric for Meteorol 132:212–227. https://doi.org/10.1016/j.agrformet.2005.07.011 es_ES
dc.description.references Tang J, Qi Y, Xu M, Misson L, Goldstein AH (2005b) Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiol 25:57–66. https://doi.org/10.1093/treephys/25.1.57 es_ES
dc.description.references Thibodeau L, Raymond P, Camiré C, Munson AD (2000) Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition and foliar nutrition. Can J for Res 30:229–238. https://doi.org/10.1139/x99-202 es_ES
dc.description.references Toland DE, Zak DR (1994) Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Can J for Res 24:1711–1716. https://doi.org/10.1139/x94-221 es_ES
dc.description.references Ukonmaanaho L, Merilä P, Nöjd P, Nieminen TM (2008) Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Env Res 13: 67−91. http://urn.fi/URN:NBN:fi-fe2016091323703 es_ES
dc.description.references UNEP (United Nations Environment Programme) (1992) World atlas of desertification. Edited by Middleton N, Thomas DSG, Arnold E, London. https://doi.org/10.1002/ldr.3400030407 es_ES
dc.description.references Xiao W, Ge X, Zeng L, Huang Z, Lei J, Zhou B, Li M (2014) Rates of litter decomposition and soil respiration in relation to soil temperature and water in different−aged Pinus massoniana forests in the three Gorges Reservoir area. China Plos ONE 9:e101890. https://doi.org/10.1371/journal.pone.0101890 es_ES
dc.description.references Xu M, Qi Y (2001) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob Change Biol 7:667–677. https://doi.org/10.1046/j.1354-1013.2001.00435.x es_ES
dc.description.references Xu J, Chen J, Brosofske K, Li Q, Weintraub M, Henderson R, Wilske B, John R, Jensen R, Li H, Shao C (2011) Influence of timber harvesting alternatives on forest soil respiration and its biophysical regulatory factors over a 5-year period in the Missouri Ozarks. Ecosystems 14:1310–1327. https://doi.org/10.1007/s10021-011-9482-2 es_ES
dc.description.references Yaalon DH (1997) Soils in the Mediterranean region: what makes them different? CATENA 28:157–169. https://doi.org/10.1016/S0341-8162(96)00035-5 es_ES
dc.description.references Yakovchenko VP, Sikora LJ (1998) Modified dichromate method for determining low concentrations of extractable organic carbon in soil. Commun Soil Sci Plant Anal 29:421–433. https://doi.org/10.1080/00103629809369955 es_ES
dc.description.references Zhang X, Guan D, Li W, Suna D, Jin C, Yuan F, Wang A, Wu J (2018) The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. For Ecol Manag 429:36–43. https://doi.org/10.1016/j.foreco.2018.06.027 es_ES
dc.description.references Zhao B, Gao J, Geng Y, Zhao X, von Gadow K (2019) Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China. Agric for Meteorol 265:370–380. https://doi.org/10.1016/j.agrformet.2018.11.034 es_ES
dc.description.references Zhou Z, Guo C, Meng H (2013) Temperature sensitivity and basal rate of soil respiration and their determinants in temperate forests of north China. PLoS ONE 8:e81793. https://doi.org/10.1371/journal.pone.0081793 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem