Giménez-Alventosa, V.; Moltó, G.; Segrelles Quilis, JD. (2021). TaScaaS: A Multi-Tenant Serverless Task Scheduler and Load Balancer as a Service. IEEE Access. 9:125215-125228. https://doi.org/10.1109/ACCESS.2021.3109972
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180337
Título:
|
TaScaaS: A Multi-Tenant Serverless Task Scheduler and Load Balancer as a Service
|
Autor:
|
Giménez-Alventosa, Vicent
Moltó, Germán
Segrelles Quilis, José Damián
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
|
Fecha difusión:
|
|
Resumen:
|
[EN] A combination of distributed multi-tenant infrastructures, such as public Clouds and on-premises installations belonging to different organisations, are frequently used for scientific research because of the high ...[+]
[EN] A combination of distributed multi-tenant infrastructures, such as public Clouds and on-premises installations belonging to different organisations, are frequently used for scientific research because of the high computational requirements involved. Although resource sharing maximises their usage, it typically causes undesirable effects such as the noisy neighbour, producing unpredictable variations of the infrastructure computing capabilities. These fluctuations affect execution efficiency, even of loosely coupled applications, such as many Monte Carlo based simulation programs. This highlights the need of a service capable to handle workload distribution across multiple infrastructures to mitigate these unpredictable performance fluctuations. With this aim, this work introduces TaScaaS, a highly scalable and completely serverless service deployed on AWS to distribute loosely coupled jobs among several computing infrastructures, and load balance them using a completely asynchronous approach to cope with the performance fluctuations with minimum impact in the execution time. We demonstrate how TaScaaS is not only capable of handling these fluctuations efficiently, achieving reduction in execution times up to 45% in our experiments, but also split the jobs to be computed to meet the user-defined execution time.
[-]
|
Palabras clave:
|
Task analysis
,
Cloud computing
,
Monte Carlo methods
,
Time factors
,
Noise measurement
,
Hardware
,
Europe
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
IEEE Access. (eissn:
2169-3536
)
|
DOI:
|
10.1109/ACCESS.2021.3109972
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/ACCESS.2021.3109972
|
Coste APC:
|
2600 €
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113126RB-I00/ES/COMPUTACION CIENTIFICA SERVERLESS A TRAVES DEL HIBRIDO CONTINUO CLOUD/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113126RB-I00/ES/COMPUTACION CIENTIFICA SERVERLESS A TRAVES DEL HIBRIDO CONTINUO CLOUD/
info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F032//PLATAFORMA DE COMPUTACION INTENSIVA MEDIANTE ACELERADORES GRAFICOS (GPUS) PARA SU APLICACION EN MEDICINA PERSONALIZADA/
info:eu-repo/grantAgreement/EC/H2020/687614/EU/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F148//AYUDA PREDOCTORAL GVA-GIMENEZ ALVENTOSA/
info:eu-repo/grantAgreement/EC/H2020/777536/EU/
info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//101016577//ARTIFICIAL INTELLIGENCE IN SECURE PRIVACY-PRESERVING COMPUTING CONTINUUM/
[-]
|
Descripción:
|
(c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
|
Agradecimientos:
|
This work was supported in part by the Spanish "Ministerio de Ciencia e Innovación" for the project Serverless Scientific Computing Across the Hybrid Cloud Continuum (SERCLOCO) under Grant PID2020-113126RB-I00, in part by ...[+]
This work was supported in part by the Spanish "Ministerio de Ciencia e Innovación" for the project Serverless Scientific Computing Across the Hybrid Cloud Continuum (SERCLOCO) under Grant PID2020-113126RB-I00, in part by the program "Ayudas para lacontratación de personal investigador en formación de carácter predoctoral, programa VALi+d" from the Conselleria d'Educació of the Generalitat Valenciana, Spain, under Grant ACIF/2018/148, in part by the Fondo Social Europeo (FSE), in part by the project "AI in Secure Privacy-Preserving Computing Continuum (AI-SPRINT)" through the European Union¿s Horizon 2020 Research and Innovation Programme under Grant 101016577, in part by the European Regional Development Fund (ERDF) of the Comunitat Valenciana 2014¿2020, the regional government of the Comunitat Valenciana, Spain, (High-Performance Algorithms for the Modeling, Simulation and early Detection of diseases in Personalized Medicine), under Project IDIFEDER/2018/032, in part by the European Open Science Cloud - Hub (EOSC-Hub) Project under Grant 777536, and in part by the Helix Nebula Science Cloud (HNSciCloud) Project is also sponsoring the service, allowing users to access the HNSciCloud services pilot for limited scale usage using the voucher schemes provided by the two contractors: T-Systems and Exoscale, under Grant 687614
[-]
|
Tipo:
|
Artículo
|