- -

Assessment of the autism spectrum disorder based on machine learning and social visual attention: a systematic review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of the autism spectrum disorder based on machine learning and social visual attention: a systematic review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Minissi, Maria Eleonora es_ES
dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.contributor.author Mantovani, Fabrizia es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2022-01-30T19:06:19Z
dc.date.available 2022-01-30T19:06:19Z
dc.date.issued 2021-06 es_ES
dc.identifier.issn 0162-3257 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180361
dc.description.abstract [EN] The assessment of autism spectrum disorder (ASD) is based on semi-structured procedures addressed to children and caregivers. Such methods rely on the evaluation of behavioural symptoms rather than on the objective evaluation of psychophysiological underpinnings. Advances in research provided evidence of modern procedures for the early assessment of ASD, involving both machine learning (ML) techniques and biomarkers, as eye movements (EM) towards social stimuli. This systematic review provides a comprehensive discussion of 11 papers regarding the early assessment of ASD based on ML techniques and children¿s social visual attention (SVA). Evidences suggest ML as a relevant technique for the early assessment of ASD, which might represent a valid biomarker-based procedure to objectively make diagnosis. Limitations and future directions are discussed. es_ES
dc.description.sponsorship The authors have no relevant financial or non-financial interests to disclose. This work was supported by the Spanish Ministry of Economy, Industry, and Competitiveness funded project "Immersive Virtual Environment for the Evaluation and Training of Children with Autism Spectrum Disorder: T Room" (IDI-20170912). This work was also supported by the Spanish Ministry of Science and Innovation funded project "T-EYE: Monitoring system for children with ASD based on artificial intelligence and physiological measures" (IDI-20201146) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Autism and Developmental Disorders es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Autism spectrum disorder es_ES
dc.subject Machine learning es_ES
dc.subject Eye tracking es_ES
dc.subject Social visual attention es_ES
dc.subject Assessment es_ES
dc.subject Classifcation es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Assessment of the autism spectrum disorder based on machine learning and social visual attention: a systematic review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10803-021-05106-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IDI-20201146//T-EYE: Monitoring system for children with ASD based on artificial intelligence and physiological measures/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IDI-20170912//Entorno virtual inmersivo para la evaluación y capacitación de niños con trastorno del espectro autista: T Room/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Minissi, ME.; Chicchi-Giglioli, IA.; Mantovani, F.; Alcañiz Raya, ML. (2021). Assessment of the autism spectrum disorder based on machine learning and social visual attention: a systematic review. Journal of Autism and Developmental Disorders. 1-16. https://doi.org/10.1007/s10803-021-05106-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10803-021-05106-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.pmid 34101081 es_ES
dc.relation.pasarela S\439310 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Alcañiz Raya, M., Chicchi Giglioli, I. A., Marín-Morales, J., Higuera-Trujillo, J. L., Olmos, E., Minissi, M. E., Teruel Garcia, G., Sirera, M., & Abad, L. (2020). Application of supervised machine learning for behavioral biomarkers of autism spectrum disorder based on electrodermal activity and virtual reality. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2020.00090 es_ES
dc.description.references Alcañiz Raya, M., Giglioli, I. A. C., Sirera, M., Minissi, E., & Abad, L. (2020). Biomarcadores del trastorno del especto autista basados en bioseñales, realidad virtual e inteligencia artificial. Medicina (Buenos Aires), 80(supl II), 31–36. es_ES
dc.description.references Alcañiz Raya, M., Marín-Morales, J., Minissi, M. E., Teruel Garcia, G., Abad, L., & Chicchi Giglioli, I. A. (2020). Machine learning and virtual reality on body movements’ behaviors to classify children with autism spectrum disorder. Journal of Clinical Medicine, 9(5), 1260. es_ES
dc.description.references American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). . American Psychiatric Association. es_ES
dc.description.references Bölte, S., Bartl-Pokorny, K. D., Jonsson, U., Berggren, S., Zhang, D., Kostrzewa, E., Falck-Ytter, T., Einspieler, C., Pokorny, F. B., Jones, E. J., Roeyers, H., Charman, T., & Marschik, P. B. (2016). How can clinicians detect and treat autism early? Methodological trends of technology use in research. Acta paediatrica, 105(2), 137–144. es_ES
dc.description.references Carette, R., Cilia, F., Dequen, G., Bosche, J., Guerin, J. L., & Vandromme, L. (2017). Automatic autism spectrum disorder detection thanks to eye-tracking and neural network-based approach. International conference on IoT technologies for healthcare (pp. 75–81). Cham: Springer. es_ES
dc.description.references Carette, R., Elbattah, M., Dequen, G., Guérin, J., Cilia, F., & Bosche, J. (2019). Learning to predict autism spectrum disorder based on the visual patterns of eye-tracking scanpaths. In HEALTHINF (pp. 103–112).  es_ES
dc.description.references Chaytor, N., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217–227. es_ES
dc.description.references Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231–239. es_ES
dc.description.references Chita-Tegmark, M. (2016). Social attention in ASD: A review and meta-analysis of eye-tracking studies. Research in Developmental Disabilities, 48, 79–93. es_ES
dc.description.references Choueiri, R. N., & Zimmerman, A. W. (2017). New assessments and treatments in ASD. Current Treatment Options in Neurology, 19(2), 6. es_ES
dc.description.references Chuba, H., Paul, R., Klin, A., & Volkmar, F. (2003, November). Assessing pragmatic skills in individuals with autism spectrum disorders. In Presentation at the National Convention of the American Speech-Language-Hearing Association, Chicago, IL. es_ES
dc.description.references Chumerin, N., & Van Hulle, M. M. (2006). Comparison of two feature extraction methods based on maximization of mutual information. 2006 16th IEEE signal processing society workshop on machine learning for signal processing (pp. 343–348). IEEE. es_ES
dc.description.references Cilia, F., Aubry, A., Bourdin, B., & Vandromme, L. (2019). Comment déterminer les zones d’intérêt visuelles sans a priori? Analyse des fixations d’enfants autistes en oculométrie. Revue De Neuropsychologie, 11(2), 144–150. es_ES
dc.description.references Cilia, F., Aubry, A., Le Driant, B., Bourdin, B., & Vandromme, L. (2019). Visual exploration of dynamic or static joint attention bids in children with autism syndrome disorder. Frontiers in psychology. https://doi.org/10.3389/fpsyg.2019.02187 es_ES
dc.description.references Constantino, J. N., & Gruber, C. P. (2005). Social responsiveness scale (SRS). Los Angeles: Western Psychological Services. es_ES
dc.description.references Crippa, A., Salvatore, C., Perego, P., Forti, S., Nobile, M., Molteni, M., & Castiglioni, I. (2015). Use of machine learning to identify children with autism and their motor abnormalities. Journal of Autism and Developmental Disorders, 45(7), 2146–2156. es_ES
dc.description.references Currenti, S. A. (2010). Understanding and determining the etiology of autism. Cellular and Molecular Neurobiology, 30(2), 161–171. es_ES
dc.description.references Dawson, G., Hill, D., Spencer, A., Galpert, L., & Watson, L. (1990). Affective exchanges between young autistic children and their mothers. Journal of Abnormal Child Psychology, 18, 335–345. es_ES
dc.description.references Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., & Liaw, J. (2004). Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Developmental Psychology, 40(2), 271. es_ES
dc.description.references Dawson, G., Webb, S. J., & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27(3), 403–424. es_ES
dc.description.references Deng, Y., Manjunath, B. S., Kenney, C., Moore, M. S., & Shin, H. (2001). An efficient color representation for image retrieval. IEEE Transactions on Image Processing, 10(1), 140–147. es_ES
dc.description.references De Bildt, A., Sytema, S., Ketelaars, C., Kraijer, D., Mulder, E., Volkmar, F., & Minderaa, R. (2004). Interrelationship between autism diagnostic observation schedule-generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic and statistical manual of mental disorders (DSM-IV-TR) classification in children and adolescents with mental retardation. Journal of Autism and Developmental Disorders, 34(2), 129–137. es_ES
dc.description.references Duan, H., Zhai, G., Min, X., Che, Z., Fang, Y., Yang, X., Gutiérrez, J., & Callet, P. L. (2019, June). A dataset of eye movements for the children with autism spectrum disorder. In Proceedings of the 10th ACM Multimedia Systems Conference (pp. 255–260). es_ES
dc.description.references Elbattah, M., Carette, R., Dequen, G., Guérin, J. L., & Cilia, F. (2019). Learning clusters in autism spectrum disorder: image-based clustering of eye-tracking scanpaths with deep autoencoder. 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 1417–1420). IEEE. es_ES
dc.description.references Forscher, P. S., Lai, C. K., Axt, J. R., Ebersole, C. R., Herman, M., Devine, P. G., & Nosek, B. A. (2019). A meta-analysis of procedures to change implicit measures. Journal of Personality and Social Psychology 117(3), 522–559. https://doi.org/10.1037/pspa0000160. es_ES
dc.description.references Franzen, M. D., & Wilhelm, K. L. (1996). Conceptual foundations of ecological validity in neuropsychological assessment. In R. J. Sbordone & C. J. Long (Eds.), Ecological validity of neuropsychological testing (pp. 91–112). Gr Press/St Lucie Press Inc. es_ES
dc.description.references Frazier, T. W., Strauss, M., Klingemier, E. W., Zetzer, E. E., Hardan, A. Y., Eng, C., & Youngstrom, E. A. (2017). A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. Journal of the American Academy of Child & Adolescent Psychiatry, 56(7), 546–555. es_ES
dc.description.references Ghaziuddin, M., & Gerstein, L. (1996). Pedantic speaking style differentiates asperger syndrome from high-functioning autism. Journal of Autism and Developmental Disorders, 26(6), 585–595. es_ES
dc.description.references Goldberg, J. H., & Helfman, J. I. (2010). Visual scanpath representation. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 203–210). es_ES
dc.description.references Goldstein, S., & Ozonoff, S. (Eds.). (2018). Assessment of autism spectrum disorder. Guilford Publications. es_ES
dc.description.references Ismail, M. M., Keynton, R. S., Mostapha, M. M., ElTanboly, A. H., Casanova, M. F., Gimel’farb, G. L., & El-Baz, A. (2016). Studying autism spectrum disorder with structural and diffusion magnetic resonance imaging: A survey. Frontiers in Human Neuroscience, 10, 211. es_ES
dc.description.references He, Y., Su, Q., Wang, L., He, W., Tan, C., Zhang, H., Ng, M. L., Yan, N., & Chen, Y. (2019). The characteristics of intelligence profile and eye gaze in facial emotion recognition in mild and moderate preschoolers with autism spectrum disorder. Frontiers in psychiatry, 10, 402. es_ES
dc.description.references Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. es_ES
dc.description.references Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon, D. R., & Linstead, E. (2019). Applications of supervised machine learning in autism spectrum disorder research: a review. Review Journal of Autism and Developmental Disorders, 6(2), 128–146. es_ES
dc.description.references Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448–456). PMLR.     es_ES
dc.description.references Jiang, M., & Zhao, Q. (2017). Learning visual attention to identify people with autism spectrum disorder. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3267–3276). es_ES
dc.description.references Kamp-Becker, I., Albertowski, K., Becker, J., Ghahreman, M., Langmann, A., Mingebach, T., Poustka, L., Weber, L., Schmidt, H., Smidt, J., Stehr, T., Roessner, V., Kucharczyk, K., Wolff, N., & Stroth, S. (2018). Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice. European Child & Adolescent Psychiatry, 27(9), 1193–1207. es_ES
dc.description.references Kang, J., Han, X., Song, J., Niu, Z., & Li, X. (2020). The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Computers in Biology and Medicine, 120, 103722. https://doi.org/10.1016/j.compbiomed.2020.103722 es_ES
dc.description.references Kasari, C., Sigman, M., & Yirmiya, N. (1993). Focused and social attention of autistic children in interactions with familiar and unfamiliar adults: A comparison of autistic, mentally retarded, and normal children. Development and Psychopathology, 5, 403–414. es_ES
dc.description.references Klin, A. (2018). Biomarkers in autism spectrum disorder: challenges, advances, and the need for biomarkers of relevance to public health. Focus, 16(2), 135–142. es_ES
dc.description.references Klin, A., & Mercadante, M. T. (2006). Autism and the pervasive developmental disorders. Revista Brasileira De Psiquiatria, 28(Suppl. 1), s1–s2. https://doi.org/10.1590/S1516-44462006000500001 es_ES
dc.description.references Koirala, A., Yu, Z., Schiltz, H., Van Hecke, A., Koth, K. A., & Zheng, Z. (2019, June). An exploration of using virtual reality to assess the sensory abnormalities in children with autism spectrum disorder. In Proceedings of the 18th ACM International Conference on Interaction Design and Children (pp. 293–300). es_ES
dc.description.references Le Couteur, A., Haden, G., Hammal, D., & McConachie, H. (2008). Diagnosing autism spectrum disorders in pre-school children using two standardised assessment instruments: the ADI-R and the ADOS. Journal of Autism and Developmental Disorders, 38(2), 362–372. es_ES
dc.description.references Li, J., Zhong, Y., Han, J., Ouyang, G., Li, X., & Liu, H. (2020). Classifying ASD children with LSTM based on raw videos. Neurocomputing, 390, 226–238. es_ES
dc.description.references Li, J., Zhong, Y., & Ouyang, G. (2018). Identification of ASD children based on video data. 2018 24th International conference on pattern recognition (ICPR) (pp. 367–372). IEEE. es_ES
dc.description.references Lieberman, M. D. (2010). Social cognitive neuroscience. es_ES
dc.description.references Liu, W., Li, M., & Yi, L. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888–898. es_ES
dc.description.references Liu, W., Yu, X., Raj, B., Yi, L., Zou, X., & Li, M. (2015). Efficient autism spectrum disorder prediction with eye movement: A machine learning framework. 2015 International conference on affective computing and intelligent interaction (ACII) (pp. 649–655). IEEE. es_ES
dc.description.references Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism from 2 to 9 years of age. Archives of General Psychiatry, 63(6), 694–701. es_ES
dc.description.references Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685. https://doi.org/10.1007/bf02172145 es_ES
dc.description.references Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. A. (1999). Diagnostic observation schedule-WPS (ADOS-WPS). Los Angeles: Western Psychological Services. es_ES
dc.description.references Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (2001). Autism diagnostic observation schedule. Los Angeles: Western Psychological Services. es_ES
dc.description.references Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605. es_ES
dc.description.references Matlis, S., Boric, K., Chu, C. J., & Kramer, M. A. (2015). Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurology, 15(1), 97. es_ES
dc.description.references Mello, R. F., & Ponti, M. A. (2018). Machine learning: A practical approach on the statistical learning theory. Springer. es_ES
dc.description.references Mitchell, T. M. (1997). Machine learning. es_ES
dc.description.references Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Linee guida per il reporting di revisioni sistematiche e meta-analisi: il PRISMA Statement. PLoS Med, 6(7), e1000097. es_ES
dc.description.references Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism: The contribution of non-verbal communication measures. Journal of Child Psychology and Psychiatry, 27(5), 657–669. es_ES
dc.description.references Naber, F. B., Bakermans-Kranenburg, M. J., van Ijzendoorn, M. H., Dietz, C., van Daalen, E., Swinkels, S. H., Buitelaar, J. K., & van Engeland, H. (2008). Joint attention development in toddlers with autism. European Child & Adolescent Psychiatry, 17(3), 143–152. es_ES
dc.description.references Nguyen, G. H., Bouzerdoum, A., & Phung, S. L. (2009). Learning pattern classification tasks with imbalanced data sets. Pattern recognition, 193–208. es_ES
dc.description.references Nosek, B. A., Hawkins, C. B., & Frazier, R. S. (2011). Implicit social cognition: From measures to mechanisms. Trends in cognitive sciences, 15(4), 152–159. es_ES
dc.description.references Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine learning in psychometrics and psychological research. Frontiers in Psychology, 10, 2970. es_ES
dc.description.references Pan, J., Ferrer, C. C., McGuinness, K., O’Connor, N. E., Torres, J., Sayrol, E., & Giro-i-Nieto, X. (2017). Salgan: Visual saliency prediction with generative adversarial networks. ArXiv preprint arXiv1701.01081. es_ES
dc.description.references Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138–157. es_ES
dc.description.references Parsons, T. D. (2016). Clinical neuropsychology and technology. Cham: Springer International Publishing. es_ES
dc.description.references Paulhus, D. L. (1991). Measurement and control of response bias. Elsevier. es_ES
dc.description.references Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. es_ES
dc.description.references Reaven, J. A., Hepburn, S. L., & Ross, R. G. (2008). Use of the ADOS and ADI-R in children with psychosis: Importance of clinical judgment. Clinical Child Psychology and Psychiatry, 13(1), 81–94. es_ES
dc.description.references Rutter, M., Bailey, A., & Lord, C. (2003). SCQ. The Social Communication Questionnaire. Western Psychological Services. es_ES
dc.description.references Shmueli, G. (2010). To explain or to predict? Statistical Science, 25, 289–310. es_ES
dc.description.references Schopler, E., Reichler, R. J., DeVellis, R. F., & Daly, K. (1980). Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of Autism and Developmental Disorders. https://doi.org/10.1007/BF02408436 es_ES
dc.description.references Sterling, L., Dawson, G., Webb, S., Murias, M., Munson, J., Panagiotides, H., & Aylward, E. (2008). The role of face familiarity in eye tracking of faces by individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(9), 1666–1675. es_ES
dc.description.references Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463. es_ES
dc.description.references Swettenham, J., Baron-Cohen, S., Charman, T., Cox, A., Baird, G., Drew, A., et al. (1998). The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants. Journal of Child Psychology and Psychiatry, 39, 747–753. es_ES
dc.description.references Tager-Flusberg, H., Paul, R., & Lord, C. (2005). Language and communication in autism. Handbook of Autism and Pervasive Developmental Disorders, 1, 335–364. es_ES
dc.description.references Tanaka, J. W., & Sung, A. (2016). The “eye avoidance” hypothesis of autism face processing. Journal of Autism and Developmental Disorders, 46(5), 1538–1552. es_ES
dc.description.references Tao, Y., & Shyu, M. L. (2019). SP-ASDNet: CNN-LSTM based ASD classification model using observer scanpaths. 2019 IEEE International conference on multimedia & expo workshops (ICMEW) (pp. 641–646). IEEE. es_ES
dc.description.references Thabtah, F. (2019). Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Informatics for Health and Social Care, 44(3), 278–297. es_ES
dc.description.references Torii, I., Ohtani, K., & Ishii, N. (2016). Measurement of ocular movement abnormality in pursuit eye movement (PEM) of autism spectrum children with disability. 2016 4th Intl conf on applied computing and information technology/3rd intl conf on computational science/intelligence and applied informatics/1st intl conf on big data, cloud computing, data science & engineering (ACIT-CSII-BCD) (pp. 235–240). IEEE. es_ES
dc.description.references Vu, T., Tran, H., Cho, K. W., Song, C., Lin, F., Chen, C. W., Hartley-McAndrew, M., Doody, K. R., & Xu, W. (2017). Effective and efficient visual stimuli design for quantitative autism screening: An exploratory study. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 297–300). IEEE. es_ES
dc.description.references Wallace, S., Parsons, S., & Bailey, A. (2017). Self-reported sense of presence and responses to social stimuli by adolescents with ASD in a collaborative virtual reality environment. Journal of Intellectual & Developmental Disability, 42(2), 131–141. es_ES
dc.description.references Wallace, S., Parsons, S., Westbury, A., White, K., White, K., & Bailey, A. (2010). Sense of presence and atypical social judgments in immersive virtual environments: Responses of adolescents with Autism Spectrum Disorders. Autism, 14(3), 199–213. es_ES
dc.description.references Walsh, P., Elsabbagh, M., Bolton, P., & Singh, I. (2011). In search of biomarkers for autism: Scientific, social and ethical challenges. Nature Reviews Neuroscience, 12(10), 603–612. es_ES
dc.description.references Wan, G., Kong, X., Sun, B., Yu, S., Tu, Y., Park, J., Lang, C., Koh, M., Wei, Z., Feng, Z., Lin, Y., & Kong, J. (2019). Applying eye tracking to identify autism spectrum disorder in children. Journal of Autism and Developmental Disorders, 49(1), 209–215. es_ES
dc.description.references Wilkinson, K. M. (1998). Profiles of language and communication skills in autism. Mental Retardation and Developmental Disabilities Research Reviews, 4(2), 73–79. es_ES
dc.description.references Wolfers, T., Floris, D. L., Dinga, R., van Rooij, D., Isakoglou, C., Kia, S. M., Zabihi, M., Llera, A., Chowdanayaka, R., Kumar, V. J., Peng, H., Laidi, C., Batalle, D., Dimitrova, R., Charman, T., Loth, E., Lai, M. C., Jones, E., Baumeister, S., … Beckmann, C. F. (2019). From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews, 104, 240–254. es_ES
dc.description.references World Health Organization [WHO]. (2019). Autism spectrum disorders. Available at: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders (Visited on April 1, 2021). es_ES
dc.description.references Wu, D., José, J. V., Nurnberger, J. I., & Torres, E. B. (2018). A biomarker characterizing neurodevelopment with applications in autism. Scientific Reports, 8(1), 1–14. es_ES
dc.description.references Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. es_ES
dc.description.references Yi, L., Feng, C., Quinn, P. C., Ding, H., Li, J., Liu, Y., & Lee, K. (2014). Do individuals with and without autism spectrum disorder scan faces differently? A new multi-method look at an existing controversy. Autism Research, 7(1), 72–83. es_ES
upv.costeAPC 2649,9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem