dc.contributor.author |
Saiz-Vivó, Marta
|
es_ES |
dc.contributor.author |
Colomer, Adrián
|
es_ES |
dc.contributor.author |
Fonfría, Carles
|
es_ES |
dc.contributor.author |
Martí-Bonmatí, Luis
|
es_ES |
dc.contributor.author |
Naranjo Ornedo, Valeriana
|
es_ES |
dc.date.accessioned |
2022-01-30T19:06:20Z |
|
dc.date.available |
2022-01-30T19:06:20Z |
|
dc.date.issued |
2021-07 |
es_ES |
dc.identifier.issn |
1099-4300 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/180362 |
|
dc.description.abstract |
[EN] Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac
ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for
clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest
in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed
to manual segmentation, an error-prone and time-consuming method. However, to optimize DL
algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work
is to develop automatic and high-performance computational models for left and right atrium (LA
and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm.
For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from
late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a
network trained with balanced steady-state free precession (bSSFP) MR images of limited number of
annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA
outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice
equals 0.8813) segmentation tasks. |
es_ES |
dc.description.sponsorship |
This work has been supported by the GVA through project PROMETEO/2019/109. The equipment used for this research has been funded by the European Union within the operating Program ERDF of the Valencian Community 2014-2020 with the grant number IDIFEDER/2020/030. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Entropy |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Supervised domain adaptation |
es_ES |
dc.subject |
MRI sequences |
es_ES |
dc.subject |
Atrial geometry |
es_ES |
dc.subject |
Semantic segmentation |
es_ES |
dc.subject.classification |
TEORIA DE LA SEÑAL Y COMUNICACIONES |
es_ES |
dc.title |
Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/e23070898 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
es_ES |
dc.description.bibliographicCitation |
Saiz-Vivó, M.; Colomer, A.; Fonfría, C.; Martí-Bonmatí, L.; Naranjo Ornedo, V. (2021). Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity. Entropy. 23(7):1-16. https://doi.org/10.3390/e23070898 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/e23070898 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
16 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
23 |
es_ES |
dc.description.issue |
7 |
es_ES |
dc.relation.pasarela |
S\444799 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
upv.costeAPC |
981,96 |
es_ES |