- -

Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity

Show simple item record

Files in this item

dc.contributor.author Saiz-Vivó, Marta es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Fonfría, Carles es_ES
dc.contributor.author Martí-Bonmatí, Luis es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-01-30T19:06:20Z
dc.date.available 2022-01-30T19:06:20Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180362
dc.description.abstract [EN] Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks. es_ES
dc.description.sponsorship This work has been supported by the GVA through project PROMETEO/2019/109. The equipment used for this research has been funded by the European Union within the operating Program ERDF of the Valencian Community 2014-2020 with the grant number IDIFEDER/2020/030. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Supervised domain adaptation es_ES
dc.subject MRI sequences es_ES
dc.subject Atrial geometry es_ES
dc.subject Semantic segmentation es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e23070898 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Saiz-Vivó, M.; Colomer, A.; Fonfría, C.; Martí-Bonmatí, L.; Naranjo Ornedo, V. (2021). Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity. Entropy. 23(7):1-16. https://doi.org/10.3390/e23070898 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e23070898 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\444799 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
upv.costeAPC 981,96 es_ES


This item appears in the following Collection(s)

Show simple item record