- -

Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iranzo, Cristian es_ES
dc.contributor.author Montorio, Raquel es_ES
dc.contributor.author García-Martín, Alberto es_ES
dc.date.accessioned 2022-02-01T10:25:45Z
dc.date.available 2022-02-01T10:25:45Z
dc.date.issued 2022-01-31
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/180424
dc.description.abstract [EN] A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent  variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models. es_ES
dc.description.abstract [ES] Estimar la producción de una explotación agrícola de forma precisa permite obtener información relevante a la hora de gestionar próximas campañas y evaluar las pérdidas provocadas por situaciones sinópticas adversas antes de la cosecha. El objetivo de este trabajo es explorar el desarrollo de un modelo capaz de estimar la producción de cebada en una pequeña explotación (127 ha), localizada en el municipio de Belchite (España). Los modelos se entrenan con variables temporales adaptadas al calendario de cultivo de la cebada en la explotación estudiada. Las variables se dividen entre las creadas con información climática y las creadas con imágenes procedentes de teledetección. Se utilizan imágenes en dos rangos del espectro electromagnético, i.e., las microondas y el óptico, tomadas con los satélites Sentinel-1 y Sentinel-2, respectivamente. Los modelos se definen utilizando todas las combinaciones de variables predictoras correlacionadas con la producción mediante una regresión lineal múltiple. El modelo con mejores resultados devuelve un error en la predicción de 57,38 kg/ha (4%). La utilización de variables espectrales, derivadas del índice de vegetación radar Cross Ratio (CR) y el óptico Inverted Red Edge Chlorophyll Index (IRECI), combinadas con variables climáticas y adaptadas al calendario del cultivo, se revela como una estrategia adecuada para obtener modelos precisos.  es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Agricultura es_ES
dc.subject Índices de vegetación es_ES
dc.subject Calendario agronómico es_ES
dc.subject Regresión múltiple es_ES
dc.subject Google Earth Engine es_ES
dc.subject Agriculture es_ES
dc.subject Vegetation indices es_ES
dc.subject Crop calendar es_ES
dc.subject Multiple regression es_ES
dc.title Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas es_ES
dc.title.alternative Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2022.15099
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Iranzo, C.; Montorio, R.; García-Martín, A. (2022). Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas. Revista de Teledetección. 0(59):59-70. https://doi.org/10.4995/raet.2022.15099 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2022.15099 es_ES
dc.description.upvformatpinicio 59 es_ES
dc.description.upvformatpfin 70 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 59 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\15099 es_ES
dc.description.references Ameline, M., Fieuzal, R., Betbeder, J., Berthoumieu, J. F., Baup, F. 2018. Estimation of corn yield by assimilating SAR and Optical time series into a simplified agro-meteorological model: from diagnostic to forecast. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4747-4760. https://doi.org/10.1109/JSTARS.2018.2878502 es_ES
dc.description.references Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., Moran, M. S. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. En: Proceedings of the 5th International Conference on Precision Agriculture. Bloomington, EE.UU., 16-19 Julio. pp 1-15 es_ES
dc.description.references Basso, B., Cammarano, D., Carfagna, E. 2013. Review of crop yield forecasting methods and early warning systems. En: Proceedings of the first meeting of the scientific advisory committee of the global strategy to improve agricultural and rural statistics. Roma, Italia, Julio (Vol. 41). es_ES
dc.description.references Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6), 1312-1323. https://doi.org/10.1016/j.rse.2010.01.010 es_ES
dc.description.references Birrell, S. J., Sudduth, K. A., Borgelt, S. C. 1996. Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14(2), 215-233. https://doi.org/10.1016/0168-1699(95)00049-6 es_ES
dc.description.references Chang, C.-W., Laird, D.A. 2002. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science, 167(2), 110-116. https://doi.org/10.1097/00010694-200202000-00003 es_ES
dc.description.references European Space Agency (ESA). Sentinel-1 Toolbox. Sentinel Online. Último acceso: 25 de Septiembre, 2020, de https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1 es_ES
dc.description.references FAO, 2017. The Future of Food and Agriculture - Trends and Challenges. Roma: Food and Agriculture Organization of the United Nations. es_ES
dc.description.references Food and Agriculture Organization of the United Nations. Crops Statistics. FAOSTAT. Último acceso: 4 de Agosto de 2020, de http://www.fao.org/faostat/en/#data/QC. es_ES
dc.description.references Frampton, W. J., Dash, J., Watmough, G., Milton, E. J, 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83-92. https://doi.org/10.1016/j.isprsjprs.2013.04.007 es_ES
dc.description.references Gibson, P. J., Power, C. H, 2000. Introductory remote sensing: Principles and Concepts. Londres: Routledge. es_ES
dc.description.references Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031 es_ES
dc.description.references Guyot, G., Baret, F. 1988. Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux. In 4th International Colloquium "Spectral Signatures of Objects in Remote Sensing", Aussois, 18-22 January 1988, Paris: ESA, Publication SP-287 (pp. 279-286). es_ES
dc.description.references Iranzo Cubel, C. 2020. CristianICS/sentineliv-gee: v0.1.0: Vegetation Index in crop rotation agricultural holding (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.5595040 es_ES
dc.description.references Kalluri, S., Gilruth, P., Bergman, R. 2003. The potential of remote sensing data for decision makers at the state, local and tribal level: Experiences from NASA's Synergy program. Environmental Science & Policy, 6(6), 487-500. https://doi.org/10.1016/j.envsci.2003.08.002 es_ES
dc.description.references Karthikeyan, L., Chawla, I., Mishra, A. K, 2020. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology, 586, 124905. https://doi.org/10.1016/j.jhydrol.2020.124905 es_ES
dc.description.references Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., Zalidis, G. 2018. Contribution of Remote Sensing on Crop Models: A Review. Journal of Imaging, 4(4), 52. https://doi.org/10.3390/jimaging4040052 es_ES
dc.description.references Kuhn, M. 2020. caret: Classification and Regression Training. Versión 6.0-86. https://CRAN.R-project.org/package=caret es_ES
dc.description.references Longares, L. A. 1997. El paisaje vegetal en el entorno de la reserva ornitológica «El Planerón» (Belchite-Zaragoza). Zaragoza: Sociedad Española de Ornitología D.L. es_ES
dc.description.references Mercier, A., Betbeder, J., Baudry, J., Denize, J., Leroux, V., Roger, J.-L., Spicher, F., Hubert-Moy, L. 2019. Evaluation of Sentinel-1 and -2 time series to derive crop phenology and biomass of wheat and rapeseed: Northern France and Brittany case studies. En: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI. Strasbourg, Francia, 21 Octubre. pp 1114903. https://doi.org/10.1117/12.2533132 es_ES
dc.description.references Mirasi, A., Mahmoudi, A., Navid, H., Kamran, K. V., Asoodar, M. A. 2019. Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data. Geocarto International, 1-16. https://doi.org/10.1080/10106049.2019.1641561 es_ES
dc.description.references Monteith, J. L., Moss, C. J., Cooke, G. W., Pirie, N. W., Bell, G. D. H. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140 es_ES
dc.description.references Murphy, S. 2020. Atmospheric Correction of a (Single) Sentinel 2 Image. Github. https://github.com/samsammurphy/gee-atmcorr-S2. es_ES
dc.description.references Pinter, Jr., Paul J., Hatfield, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T., Upchurch, D.R. 2003. Remote Sensing for Crop Management. Photogrammetric Engineering & Remote Sensing, 69, 647-664. https://doi.org/10.14358/PERS.69.6.647 es_ES
dc.description.references QGIS.org, 2020. QGIS Geographic Information System (Versión 3.12.3). Open Source Geospatial Foundation. http://qgis.org es_ES
dc.description.references R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ es_ES
dc.description.references Rouse, J. W., Hasas, R. H., Schell, J. A., Deerino, D. W., Harlan, J. C.1974. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/OSFC. Type III. Final Report. Oreenbello MD. pp. 371 es_ES
dc.description.references Schlund, M., Erasmi, S. 2020. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sensing of Environment, 246, 111814. https://doi.org/10.1016/j.rse.2020.111814 es_ES
dc.description.references Schmitt, M., Hughes, L. H., Qiu, C., Zhu, X. X. 2019. Aggregating cloud-free Sentinel-2 images with Google Earth Engine. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W7, 145-152. https://doi.org/10.5194/isprs-annals-IV-2-W7-145-2019 es_ES
dc.description.references Steele-Dunne, S.C., McNairn, H., Monsivais-Huertero, A., Judge, J., Liu, P.-W., Papathanassiou, K. 2017. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2249-2273. https://doi.org/10.1109/JSTARS.2016.2639043 es_ES
dc.description.references Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., Ceschia, E. 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415-426. https://doi.org/10.1016/j.rse.2017.07.015 es_ES
dc.description.references Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., Morcette, J.-J. 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675-686. https://doi.org/10.1109/36.581987 es_ES
dc.description.references Wasserman, L. 2004. Models, Statistical Inference and Learning. En L. Wasserman (Ed.), All of Statistics: A Concise Course in Statistical Inference (pp. 87-96). New York: Springer. https://doi.org/10.1007/978-0-387-21736-9_6 es_ES
dc.description.references Wilson, R. T. 2013. Py6S: A Python interface to the 6S radiative transfer model. Comput. Geosci., 51(2), 166-171. https://doi.org/10.1016/j.cageo.2012.08.002 es_ES
dc.description.references Zhao, Y., Potgieter, A. B., Zhang, M., Wu, B., Hammer, G. L. 2020. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sensing, 12(6), 1024. https://doi.org/10.3390/rs12061024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem