Mostrar el registro sencillo del ítem
dc.contributor.author | Iranzo, Cristian | es_ES |
dc.contributor.author | Montorio, Raquel | es_ES |
dc.contributor.author | García-Martín, Alberto | es_ES |
dc.date.accessioned | 2022-02-01T10:25:45Z | |
dc.date.available | 2022-02-01T10:25:45Z | |
dc.date.issued | 2022-01-31 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/180424 | |
dc.description.abstract | [EN] A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models. | es_ES |
dc.description.abstract | [ES] Estimar la producción de una explotación agrícola de forma precisa permite obtener información relevante a la hora de gestionar próximas campañas y evaluar las pérdidas provocadas por situaciones sinópticas adversas antes de la cosecha. El objetivo de este trabajo es explorar el desarrollo de un modelo capaz de estimar la producción de cebada en una pequeña explotación (127 ha), localizada en el municipio de Belchite (España). Los modelos se entrenan con variables temporales adaptadas al calendario de cultivo de la cebada en la explotación estudiada. Las variables se dividen entre las creadas con información climática y las creadas con imágenes procedentes de teledetección. Se utilizan imágenes en dos rangos del espectro electromagnético, i.e., las microondas y el óptico, tomadas con los satélites Sentinel-1 y Sentinel-2, respectivamente. Los modelos se definen utilizando todas las combinaciones de variables predictoras correlacionadas con la producción mediante una regresión lineal múltiple. El modelo con mejores resultados devuelve un error en la predicción de 57,38 kg/ha (4%). La utilización de variables espectrales, derivadas del índice de vegetación radar Cross Ratio (CR) y el óptico Inverted Red Edge Chlorophyll Index (IRECI), combinadas con variables climáticas y adaptadas al calendario del cultivo, se revela como una estrategia adecuada para obtener modelos precisos. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Agricultura | es_ES |
dc.subject | Índices de vegetación | es_ES |
dc.subject | Calendario agronómico | es_ES |
dc.subject | Regresión múltiple | es_ES |
dc.subject | Google Earth Engine | es_ES |
dc.subject | Agriculture | es_ES |
dc.subject | Vegetation indices | es_ES |
dc.subject | Crop calendar | es_ES |
dc.subject | Multiple regression | es_ES |
dc.title | Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas | es_ES |
dc.title.alternative | Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2022.15099 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Iranzo, C.; Montorio, R.; García-Martín, A. (2022). Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas. Revista de Teledetección. 0(59):59-70. https://doi.org/10.4995/raet.2022.15099 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2022.15099 | es_ES |
dc.description.upvformatpinicio | 59 | es_ES |
dc.description.upvformatpfin | 70 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 0 | es_ES |
dc.description.issue | 59 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\15099 | es_ES |
dc.description.references | Ameline, M., Fieuzal, R., Betbeder, J., Berthoumieu, J. F., Baup, F. 2018. Estimation of corn yield by assimilating SAR and Optical time series into a simplified agro-meteorological model: from diagnostic to forecast. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4747-4760. https://doi.org/10.1109/JSTARS.2018.2878502 | es_ES |
dc.description.references | Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., Moran, M. S. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. En: Proceedings of the 5th International Conference on Precision Agriculture. Bloomington, EE.UU., 16-19 Julio. pp 1-15 | es_ES |
dc.description.references | Basso, B., Cammarano, D., Carfagna, E. 2013. Review of crop yield forecasting methods and early warning systems. En: Proceedings of the first meeting of the scientific advisory committee of the global strategy to improve agricultural and rural statistics. Roma, Italia, Julio (Vol. 41). | es_ES |
dc.description.references | Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6), 1312-1323. https://doi.org/10.1016/j.rse.2010.01.010 | es_ES |
dc.description.references | Birrell, S. J., Sudduth, K. A., Borgelt, S. C. 1996. Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14(2), 215-233. https://doi.org/10.1016/0168-1699(95)00049-6 | es_ES |
dc.description.references | Chang, C.-W., Laird, D.A. 2002. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science, 167(2), 110-116. https://doi.org/10.1097/00010694-200202000-00003 | es_ES |
dc.description.references | European Space Agency (ESA). Sentinel-1 Toolbox. Sentinel Online. Último acceso: 25 de Septiembre, 2020, de https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1 | es_ES |
dc.description.references | FAO, 2017. The Future of Food and Agriculture - Trends and Challenges. Roma: Food and Agriculture Organization of the United Nations. | es_ES |
dc.description.references | Food and Agriculture Organization of the United Nations. Crops Statistics. FAOSTAT. Último acceso: 4 de Agosto de 2020, de http://www.fao.org/faostat/en/#data/QC. | es_ES |
dc.description.references | Frampton, W. J., Dash, J., Watmough, G., Milton, E. J, 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83-92. https://doi.org/10.1016/j.isprsjprs.2013.04.007 | es_ES |
dc.description.references | Gibson, P. J., Power, C. H, 2000. Introductory remote sensing: Principles and Concepts. Londres: Routledge. | es_ES |
dc.description.references | Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031 | es_ES |
dc.description.references | Guyot, G., Baret, F. 1988. Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux. In 4th International Colloquium "Spectral Signatures of Objects in Remote Sensing", Aussois, 18-22 January 1988, Paris: ESA, Publication SP-287 (pp. 279-286). | es_ES |
dc.description.references | Iranzo Cubel, C. 2020. CristianICS/sentineliv-gee: v0.1.0: Vegetation Index in crop rotation agricultural holding (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.5595040 | es_ES |
dc.description.references | Kalluri, S., Gilruth, P., Bergman, R. 2003. The potential of remote sensing data for decision makers at the state, local and tribal level: Experiences from NASA's Synergy program. Environmental Science & Policy, 6(6), 487-500. https://doi.org/10.1016/j.envsci.2003.08.002 | es_ES |
dc.description.references | Karthikeyan, L., Chawla, I., Mishra, A. K, 2020. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology, 586, 124905. https://doi.org/10.1016/j.jhydrol.2020.124905 | es_ES |
dc.description.references | Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., Zalidis, G. 2018. Contribution of Remote Sensing on Crop Models: A Review. Journal of Imaging, 4(4), 52. https://doi.org/10.3390/jimaging4040052 | es_ES |
dc.description.references | Kuhn, M. 2020. caret: Classification and Regression Training. Versión 6.0-86. https://CRAN.R-project.org/package=caret | es_ES |
dc.description.references | Longares, L. A. 1997. El paisaje vegetal en el entorno de la reserva ornitológica «El Planerón» (Belchite-Zaragoza). Zaragoza: Sociedad Española de Ornitología D.L. | es_ES |
dc.description.references | Mercier, A., Betbeder, J., Baudry, J., Denize, J., Leroux, V., Roger, J.-L., Spicher, F., Hubert-Moy, L. 2019. Evaluation of Sentinel-1 and -2 time series to derive crop phenology and biomass of wheat and rapeseed: Northern France and Brittany case studies. En: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI. Strasbourg, Francia, 21 Octubre. pp 1114903. https://doi.org/10.1117/12.2533132 | es_ES |
dc.description.references | Mirasi, A., Mahmoudi, A., Navid, H., Kamran, K. V., Asoodar, M. A. 2019. Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data. Geocarto International, 1-16. https://doi.org/10.1080/10106049.2019.1641561 | es_ES |
dc.description.references | Monteith, J. L., Moss, C. J., Cooke, G. W., Pirie, N. W., Bell, G. D. H. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140 | es_ES |
dc.description.references | Murphy, S. 2020. Atmospheric Correction of a (Single) Sentinel 2 Image. Github. https://github.com/samsammurphy/gee-atmcorr-S2. | es_ES |
dc.description.references | Pinter, Jr., Paul J., Hatfield, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T., Upchurch, D.R. 2003. Remote Sensing for Crop Management. Photogrammetric Engineering & Remote Sensing, 69, 647-664. https://doi.org/10.14358/PERS.69.6.647 | es_ES |
dc.description.references | QGIS.org, 2020. QGIS Geographic Information System (Versión 3.12.3). Open Source Geospatial Foundation. http://qgis.org | es_ES |
dc.description.references | R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ | es_ES |
dc.description.references | Rouse, J. W., Hasas, R. H., Schell, J. A., Deerino, D. W., Harlan, J. C.1974. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/OSFC. Type III. Final Report. Oreenbello MD. pp. 371 | es_ES |
dc.description.references | Schlund, M., Erasmi, S. 2020. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sensing of Environment, 246, 111814. https://doi.org/10.1016/j.rse.2020.111814 | es_ES |
dc.description.references | Schmitt, M., Hughes, L. H., Qiu, C., Zhu, X. X. 2019. Aggregating cloud-free Sentinel-2 images with Google Earth Engine. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W7, 145-152. https://doi.org/10.5194/isprs-annals-IV-2-W7-145-2019 | es_ES |
dc.description.references | Steele-Dunne, S.C., McNairn, H., Monsivais-Huertero, A., Judge, J., Liu, P.-W., Papathanassiou, K. 2017. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2249-2273. https://doi.org/10.1109/JSTARS.2016.2639043 | es_ES |
dc.description.references | Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., Ceschia, E. 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415-426. https://doi.org/10.1016/j.rse.2017.07.015 | es_ES |
dc.description.references | Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., Morcette, J.-J. 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675-686. https://doi.org/10.1109/36.581987 | es_ES |
dc.description.references | Wasserman, L. 2004. Models, Statistical Inference and Learning. En L. Wasserman (Ed.), All of Statistics: A Concise Course in Statistical Inference (pp. 87-96). New York: Springer. https://doi.org/10.1007/978-0-387-21736-9_6 | es_ES |
dc.description.references | Wilson, R. T. 2013. Py6S: A Python interface to the 6S radiative transfer model. Comput. Geosci., 51(2), 166-171. https://doi.org/10.1016/j.cageo.2012.08.002 | es_ES |
dc.description.references | Zhao, Y., Potgieter, A. B., Zhang, M., Wu, B., Hammer, G. L. 2020. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sensing, 12(6), 1024. https://doi.org/10.3390/rs12061024 | es_ES |