Mostrar el registro sencillo del ítem
dc.contributor.author | del Vigo García, Ángel | es_ES |
dc.contributor.author | Juana Sirgado, Luis | es_ES |
dc.contributor.author | Rodríguez-Sinobas, Leonor | es_ES |
dc.date.accessioned | 2022-02-01T10:53:59Z | |
dc.date.available | 2022-02-01T10:53:59Z | |
dc.date.issued | 2022-01-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/180429 | |
dc.description.abstract | [EN] An explicit finite differences routine was developed to simulate three-dimensional water flow from trickle irrigation under unsaturated non-stationary conditions; the code was validated by comparison with analytical solutions, other existing numerical models and laboratory experiments. Recently, the model was improved in order to reproduce flow root absorption via a time dependent macroscopic approach. This work presents the numerical model subroutine for root absorption and some results obtained by the model. | es_ES |
dc.description.abstract | [ES] El artículo presenta un programa basado en un método explícito de integración por diferencias finitas para la simulación del flujo de agua en el suelo bajo condiciones de riego por goteo superficial en régimen variable (suelo no saturado). El programa original, que simula el movimiento del agua en suelo desnudo, fue validado por comparación con soluciones analíticas, otros modelos numéricos y ensayos experimentales; a este código, recientemente se le ha añadido una subrutina que simula la absorción de la raíz de la planta mediante un modelo de aproximación macroscópica que depende explícitamente del tiempo. Este trabajo presenta los detalles del modelo numérico de absorción de la raíz así como algunas de sus simulaciones. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Simulación del riego | es_ES |
dc.subject | Ecuación de Richards | es_ES |
dc.subject | Aproximación macroscópica | es_ES |
dc.subject | Circuito-RC | es_ES |
dc.subject | Método explícito | es_ES |
dc.subject | Riego por goteo | es_ES |
dc.subject | Flow simulation | es_ES |
dc.subject | Richards equation | es_ES |
dc.subject | Macroscopic approach | es_ES |
dc.subject | RC-circuit | es_ES |
dc.subject | Explicit scheme | es_ES |
dc.subject | Trickle irrigation | es_ES |
dc.title | Modelo numérico de simulación del flujo de agua en el suelo afectado por la absorción de la raíz | es_ES |
dc.title.alternative | Numerical model for the simulation of soil water flow under root absorption conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2022.16531 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Del Vigo García, Á.; Juana Sirgado, L.; Rodríguez-Sinobas, L. (2022). Modelo numérico de simulación del flujo de agua en el suelo afectado por la absorción de la raíz. Ingeniería del agua. 26(1):37-46. https://doi.org/10.4995/ia.2022.16531 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2022.16531 | es_ES |
dc.description.upvformatpinicio | 37 | es_ES |
dc.description.upvformatpfin | 46 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\16531 | es_ES |
dc.description.references | Carnahan, B. 1979. Cálculo numérico. Métodos y aplicaciones. Rueda ed. Madrid. | es_ES |
dc.description.references | Coelho, F.E., Or D. 1996. A parametric model for two-dimensional water uptake intensity by corn roots under drip irrigation. Soil Science Society American Journal, 60, 1039-1049. https://doi.org/10.2136/sssaj1996.03615995006000040012x | es_ES |
dc.description.references | Colimba Limaico, J. E., Zubelzu Minguez, S. and Rodriguez Sinobas, L. 2021. Assessing water doses, water use efficiency and tomato quality under greenhouse conditions in Natabuela-Ecuador. European Geoscience Union 2020, session SSS9.4/EGU21-2911 - The challenges of irrigation in the COVID19 scenario. Viena, Austria. https://doi.org/10.5194/egusphere-egu21-2911 | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana, L. 2019a. Algoritmo para la resolución de la ecuación de Richards en 3-D para riego por goteo: Método, validación y resultados preliminares. XXXVII Congreso Nacional de Riegos. Don Benito. Spain. http://hdl.handle.net/10662/9217 | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana L. 2019b. Study of water infiltration in soil by Richards equations in 3D: summary and methodology validation. 11th World Congress on Water Resources and Environment. Madrid. Spain. | es_ES |
dc.description.references | http://ewra.net/pages/EWRA2019_Proceedings.pdf | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana, L. 2020a. Numerical routine for soil dynamics from trickle irrigation. Applied Mathematical Modeling, 83, 371-385. https://doi.org/10.1016/j.apm.2020.01.058 | es_ES |
dc.description.references | del Vigo, Á. 2020b. Simulación del flujo del agua en el suelo en riego por goteo superficial, soluciones analíticas aproximadas, caracterización del suelo y diseño de los riegos. Phd. Thesis, Universidad Politécnica de Madrid. Madrid. https://doi.org/10.20868/UPM.thesis.63840 | es_ES |
dc.description.references | del Vigo, Á., Somolinos, B. 2021. Teoría de Circuitos. Problemas resueltos. García Maroto ed. Barcelona. Spain. | es_ES |
dc.description.references | Feddes, R.A., Kowalik, P, Kolinska-Malinka, K, Zaradny, H. 1976. Simulation of field water uptake by plants using a soil water dependent root extraction function. Journal of Hydrology, 31, 13-26. | es_ES |
dc.description.references | Feddes, R.A., Kowalik, P., Zaradny, H. 1978. Simulation of field water use and crop yield. Simulation monographs. Centre for Agricultural Publishing and Documentation. Wageningen. | es_ES |
dc.description.references | Gardner, W.R. 1960. Dynamic aspects of water availability to plants. Soil Science, 89, 63-73. https://doi.org/10.1097/00010694-196002000-0001 | es_ES |
dc.description.references | Gardner, W.R. 1964. Relation of root distribution to water uptake and availability. Agronomy Journal, 56, 41-45. https://doi.org/10.2134/agronj1964.00021962005600010013x | es_ES |
dc.description.references | Gardner, W.R. 1965. Dynamic aspects of soil-water availability to plants. Annual Review of Plant Physiology, 16, 323-342. https://doi.org/10.1146/annurev.pp.16.060165.001543 | es_ES |
dc.description.references | Hopmans, J.W., Bristow, K.L. Current capabilities and future needs of root water and nutrient uptake modeling. 2002. Advances in Agronomy, 77, 104-175. https://doi.org/10.1016/S0065-2113(02)77014-4 | es_ES |
dc.description.references | Lubana, PPS, Narda, N.K., Brown, L.C. 2002. Application of a hemispherical model to predict radius of wetted soil volume under point source emitters for trickle irrigated tomatoes in Punjab state. Trans ASABE, 32, 243-257. | es_ES |
dc.description.references | Molz, F.J., Remson I. 1970. Extraction term models of soil moisture use by transpiring plants. Water Resources Research, 6, 1346-1356. https://doi.org/10.1029/WR006i005p01346 | es_ES |
dc.description.references | Mualem,Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Journal, 12, 513. https://doi.org/10.1029/WR012i003p00513 | es_ES |
dc.description.references | Musters, PAD, Bouten, W. 1999. Assessing rooting depths of an Austrian pine stand by inverse modelling soil water content maps. Water Resources Research, 35, 3041-3048. https://doi.org/10.1029/1999WR900173 | es_ES |
dc.description.references | Neuman, S.P., Feddes, R.E., Bresler, E. 1975. Finite element analysis of two-dimensional flow in soils considering water uptake by roots. Soil Science Society American Proceedings, 39, 225-230. https://doi.org/10.2136/sssaj1975.03615995003900020007x | es_ES |
dc.description.references | Philip, J.R. 1991. Effects of root and sub irrigation on evaporation and percolation losses. Soil Science Society American Journal, 55, 1520-1523. https://doi.org/10.2136/sssaj1991.03615995005500060003x | es_ES |
dc.description.references | Schaap, M.G., Leij, F.J., van Genuchten, M.T. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedo-transfer functions. Journal of Hydrology, 251, 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8 | es_ES |
dc.description.references | Šimůnek, J., van Genuchten, M., Šejna, M. 2006. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual Version 1.0. University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic. | es_ES |
dc.description.references | van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892. https://doi.org/10.2136/sssaj1980.03615995004400050002x | es_ES |
dc.description.references | Vrugt, J.A., van Wijk, M.T., Hopmans, J.W., Simunek, J. 2001. One, two and three dimensional root water uptake functions for transient modelling. Water Resources Research, 37(10):2457-2470. https://doi.org/10.1029/2000WR000027 | es_ES |
dc.description.references | Warrick, A.W., Lomen, D.O., Amoozegard-Fard, A. 1980. Linearized moisture flow with root extraction for three-dimensional, steady conditions. Soil Science Society American Journal, 44, 911-914. https://doi.org/10.2136/sssaj1980.03615995004400050006x | es_ES |
dc.description.references | Zapata-Sierra, A.J., Moreno-Pérez, M.F., Reyes-Requena, R., Manzano-Agugliaro, F. 2021. Root distribution with the use of drip irrigation on layered soils at greenhouses crops. Science of the total environment, 768, 144944. https://doi.org/10.1016/j.scitotenv.2021.144944 | es_ES |