Mostrar el registro sencillo del ítem
dc.contributor.author | Yahaya, R. | es_ES |
dc.contributor.author | Zahari, N. | es_ES |
dc.contributor.author | Wan Adnan, W.A.W. | es_ES |
dc.date.accessioned | 2022-02-03T10:49:14Z | |
dc.date.available | 2022-02-03T10:49:14Z | |
dc.date.issued | 2022-01-31 | |
dc.identifier.uri | http://hdl.handle.net/10251/180463 | |
dc.description.abstract | [EN] There are many types of fabric materials used in military applications. From clothing to protective equipment, fabric analysis mostly focused on its physical properties. Still, its flammability has not been well studied, such as ease of ignition, heat release, and toxicity. This paper reports the flammability properties of fabric in military applications. The ignition time, heat release, and smoke production of six commercially available military fabrics are discussed in this article. The fabrics analysed are cotton, polyester-cotton, coated nylon, and kenaf fabric. The fabric grouping into the coated and printed fabric while cotton and kenaf were tested as a comparison. Results indicated that coated fabric (N420D and N1000D) showed higher TTI compared to printed fabric (P35C65, P35C65M, and P65C35). It is affected by heat flux, the areal density of the sample, sample mass, and the number of sample layers. Coated fabrics (N420D and N1000D) indicate higher EHC compared with other fabrics. For printed fabric, a relatively lower EHC was observed as it indicates incomplete combustion. Total heat release of the samples tested was presented as an integration of the HRR vs time curve. Coated samples show the highest values for PHRR and THR values compared to printed and cotton fabrics. | es_ES |
dc.description.sponsorship | We thank officers who conducted the cone calorimeter tests at the Flammability Lab, Protection and Biophysical Technology Division, STRIDE, Ministry of Defence, Malaysia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Journal of Applied Research in Technology & Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Flammability | es_ES |
dc.subject | Cone calorimeter | es_ES |
dc.subject | Smoke density | es_ES |
dc.subject | Heat release rate | es_ES |
dc.title | Flammability analysis of military fabrics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/jarte.2022.16710 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Yahaya, R.; Zahari, N.; Wan Adnan, W. (2022). Flammability analysis of military fabrics. Journal of Applied Research in Technology & Engineering. 3(1):9-17. https://doi.org/10.4995/jarte.2022.16710 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/jarte.2022.16710 | es_ES |
dc.description.upvformatpinicio | 9 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2695-8821 | |
dc.relation.pasarela | OJS\16710 | es_ES |
dc.description.references | Alongi, J., Tata, J., Carosio, F., Rosace, G., Frache, A., & Camino, G. (2015). A Comparative Analysis of Nanoparticle Adsorption as Fire-Protection Approach for Fabrics. Polymers, 7(1), 47-68. https://doi.org/10.3390/polym7010047 | es_ES |
dc.description.references | Babrauskas, V., & Peacock, R. D. (1992). Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Safety Journal, 18, 255-272. https://doi.org/10.1016/0379-7112(92)90019-9 | es_ES |
dc.description.references | Bei, P., Liwei, C., & Chang, L. (2012). International Symposium on Safety Science and Engineering in China, An Experimental Study on the Burning Behavior of Fabric used Indoor. 43, 257-261. https://doi.org/10.1016/j.proeng.2012.08.044 | es_ES |
dc.description.references | Ceylan, Ö., Alongi, J., Landuyt, L. Van, Frache, A., & Clerck, K. De. (2013). Combustion characteristics of cellulosic loose fibres. Fire and Materials, 37, 482-490. https://doi.org/10.1002/fam.2147 | es_ES |
dc.description.references | Chee, S. S., Jawaid, M., Alothman, O. Y., & Yahaya, R. (2020). Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 10(37), 21686-21697. https://doi.org/10.1039/d0ra02126a | es_ES |
dc.description.references | Chen, Q., & Zhao, T. (2016). The thermal decomposition and heat release properties of the nylon/cotton, polyester/cotton and Nomex/cotton blend fabrics. Textile Research Journal, 86(17), 1859-1868. https://doi.org/10.1177/0040517515617423 | es_ES |
dc.description.references | Dewaghe, C., Lew, C. Y., Claes, M., Belgium, S. A., & Dubois, P. (2011). Fire-retardant applications of polymer-carbon nanotubes composites: Improved barrier effect and synergism. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications. Woodhead Publishing Limited. 718-745. https://doi.org/10.1533/9780857091390.3.718 | es_ES |
dc.description.references | El Gazi, M., Sonnier, R., Giraud, S., Batistella, M., Basak, S., Dumazert, L., Hajj, R., & El Hage, R. (2021). Fire behavior of thermally thin materials in cone calorimeter. Polymers, 13(8). https://doi.org/10.3390/polym13081297 | es_ES |
dc.description.references | Elsayed, E. M., Attia, N. F., & Alshehri, L. A. (2020). Innovative Flame Retardant and Antibacterial Fabrics Coating Based on Inorganic Nanotubes. Chemistry Select, 5(10), 2961-2965. https://doi.org/10.1002/slct.201904182 | es_ES |
dc.description.references | Fateh, T., Kahanji, C., Joseph, P., & Rogaume, T. (2017). A study of the effect of thickness on the thermal degradation and flammability characteristics of some composite materials using a cone calorimeter. Journal of Fire Sciences, 35(6), 547-564. https://doi.org/10.1177/0734904117713690 | es_ES |
dc.description.references | Godfrey, T., Auerbach, M., Proulx, G., Yip, P., & Grady, M. (2016). Modeling exposures of a nylon-cotton fabric to high radiant heat flux. Journal of Engineered Fibers and Fabrics, 11(3), 55-63. https://doi.org/10.1177/155892501601100308 | es_ES |
dc.description.references | Grover, T., Khandual, A., & Luximon, A. (2014). Fire protection: Flammability and textile fibres. Colourage, 61(5), 39-45+48. | es_ES |
dc.description.references | Hernandez, N., Sonnier, R., & Giraud, S. (2018). Influence of grammage on heat release rate of polypropylene fabrics. Journal of Fire Sciences, 36(1), 30-46. https://doi.org/10.1177/0734904117738928 | es_ES |
dc.description.references | Huggett, C. (1980). Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials, 4(2), 61-65. https://doi.org/10.1002/fam.810040202 | es_ES |
dc.description.references | Kotresh, T. M., Indushekar, R., Subbulakshmi, M. S., Vijayalakshmi, S. N., Prasad, A. K., & Agrawal, A. K (2006). Evaluation of Commercial Flame Retardant Polyester Curtain Fabrics in the Cone Calorimeter. Journal of Industrial Textiles, 36, 47-58. https://doi.org/10.1177/1528083706064379 | es_ES |
dc.description.references | Luo, S. L., Zhang, H. L., Zhan, Z. C., Mao, B. H., Jiang, Z. J., & Yan, Y. R. (2014). Investigation of flammable behavior of nylon 6 fabrics with and without spandex using cone calorimeter test and vertical burning test. Advanced Materials Research, 852, 644-647. https://doi.org/10.4028/www.scientific.net/AMR.852.644 | es_ES |
dc.description.references | Moinuddin, K., Razzaque, Q. S., & Thomas, A. (2020). Numerical simulation of coupled pyrolysis and combustion reactions with directly measured fire properties. Polymers, 12(9), 2075. https://doi.org/10.3390/POLYM12092075 | es_ES |
dc.description.references | Morgan, A. B., & Yip, P. W. (2016). Effects of laundering on military uniform fabric flammability. Fire and Materials, 40, 599-611. https://doi.org/10.1002/fam.2313 | es_ES |
dc.description.references | Mouritz, A. P., Mathys, Z., & Gibson, A. G. (2006). Heat release of polymer composites in fire. Composites Part A: Applied Science and Manufacturing, 37(7), 1040-1054. https://doi.org/10.1016/j.compositesa.2005.01.030 | es_ES |
dc.description.references | Nazaré, S., Kandola, B., & Horrocks, A. R. (2002). Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire and Materials, 26(4-5), 191-199. https://doi.org/10.1002/fam.796 | es_ES |
dc.description.references | Samolov, A. D., Simić, D. M., Fidanovski, B. Z., Obradović, V. M., Tomić, L. D., & Knežević, D. M. (2020). Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2. Defence Technology, 17(6), 2050-2056. https://doi.org/10.1016/j.dt.2020.10.008 | es_ES |
dc.description.references | Tata, J., Alongi, J., Carosio, F., & Frache, A. (2011). Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I.Combustion behavior of polyester. Fire and Materials, 35(6) 397-409. https://doi.org/10.1002/fam.1061 | es_ES |
dc.description.references | White, R.H., Nam, S., Parikh, D.V. (2013). Cone calorimeter evaluation of two flame retardant cotton fabrics. Fire and Materials, 37, 46-57. https://doi.org/10.1002/fam.2111 | es_ES |
dc.description.references | Xu, D., Wang, S., Wang, Y., Liu, Y., Dong, C., Jiang, Z., & Zhu, P. (2020). Preparation and mechanism of flameretardant cotton fabric with phosphoramidate siloxane polymer through multistep coating. Polymers, 12(7), 1538. https://doi.org/10.3390/polym12071538 | es_ES |
dc.description.references | Xu, Q., Chen, L., Harries, K. A., & Li, X. (2017). Combustion performance of engineered bamboo from cone calorimeter tests. European Journal of Wood and Wood Products, 75(2), 161-173. https://doi.org/10.1007/s00107-016-1074-6 | es_ES |
dc.description.references | Yahaya, R., Sapuan, S., Jawaid, M., Leman, Z., & Zainudin, E. (2014). Mechanical performance of woven kenafKevlar hybrid composites. Journal of Reinforced Plastics and Composites, 33, 2242-2254. https://doi.org/10.1177/0731684414559864 | es_ES |
dc.description.references | Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Effect of fibre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application. Defence Technology, 12(1), 52-58. https://doi.org/10.1016/j.dt.2015.08.005 | es_ES |
dc.description.references | Yang, C .Q., & He, Q. (2011). Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. Journal of Analytical and Applied Pyrolysis, 91(1), 125-133. https://doi.org/10.1016/j.jaap.2011.01.012 | es_ES |