- -

Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: A proof of concept for diagnosis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: A proof of concept for diagnosis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.contributor.author Carrasco-Ribelles, Lucia A. es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Minissi, Maria Eleonora es_ES
dc.contributor.author Teruel-Garcia, Gonzalo es_ES
dc.contributor.author Sirera, Marian es_ES
dc.contributor.author Abad, Luis es_ES
dc.date.accessioned 2022-02-04T19:03:36Z
dc.date.available 2022-02-04T19:03:36Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 1939-3792 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180499
dc.description.abstract [EN] The core symptoms of autism spectrum disorder (ASD) mainly relate to social communication and interactions. ASD assessment involves expert observations in neutral settings, which introduces limitations and biases related to lack of objectivity and does not capture performance in real-world settings. To overcome these limitations,advances in technologies (e.g., virtual reality) and sensors (e.g., eye-tracking tools) have been used to create realistic simulated environments and track eye movements, enriching assessments with more objective data than can be obtained via traditional measures. This study aimed to distinguish between autistic and typically developing children using visual attention behaviors through an eye-tracking paradigm in a virtual environment as a measure of attunement to and extraction of socially relevant information. The 55 children participated. Autistic children presented a higher number of frames, both overall and per scenario, and showed higher visual preferences for adults over children, as well as specific preferences for adults¿ rather than children¿s faces on which looked more at bodies. A set of multivariate supervised machine learning models were developed using recursive feature selection to recognize ASD based on extracted eye gaze features. The models achieved up to 86% accuracy (sensitivity = 91%) in recognizing autistic children. Our results should be taken as preliminary due to the relatively small sample size and the lack of an external replication dataset. However, to our knowledge, this constitutes a first proof of concept in the combined use of virtual reality, eye-tracking tools, and machine learning for ASD recognition. es_ES
dc.description.sponsorship Spanish Ministry of Economy, Industry, and Competitiveness-funded project "Immersive Virtual Environment for the Evaluation and Training of Children with Autism Spectrum Disorder: T Room, Grant/Award Number: IDI20170912 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Autism Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Autism spectrum disorder es_ES
dc.subject Behavioral biomarker es_ES
dc.subject Eye tracking es_ES
dc.subject Machine learning es_ES
dc.subject Multivariate supervised learning es_ES
dc.subject Virtual reality es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: A proof of concept for diagnosis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/aur.2636 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IDI-20170912//Entorno virtual inmersivo para la evaluación y capacitación de niños con trastorno del espectro autista: T Room/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Alcañiz Raya, ML.; Chicchi-Giglioli, IA.; Carrasco-Ribelles, LA.; Marín-Morales, J.; Minissi, ME.; Teruel-Garcia, G.; Sirera, M.... (2022). Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: A proof of concept for diagnosis. Autism Research. 15(1):131-145. https://doi.org/10.1002/aur.2636 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/aur.2636 es_ES
dc.description.upvformatpinicio 131 es_ES
dc.description.upvformatpfin 145 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34811930 es_ES
dc.relation.pasarela S\451334 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem