- -

Validity, reliability, and sensitivity to motor impairment severity of a multi-touch app designed to assess hand mobility, coordination, and function after stroke

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validity, reliability, and sensitivity to motor impairment severity of a multi-touch app designed to assess hand mobility, coordination, and function after stroke

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mollà-Casanova, Sara es_ES
dc.contributor.author Llorens Rodríguez, Roberto es_ES
dc.contributor.author Borrego, Adrián es_ES
dc.contributor.author Salinas-Martinez, Barbara es_ES
dc.contributor.author Serra-Añó, Pilar es_ES
dc.date.accessioned 2022-02-04T19:03:38Z
dc.date.available 2022-02-04T19:03:38Z
dc.date.issued 2021-04-23 es_ES
dc.identifier.issn 1743-0003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180501
dc.description.abstract [EN] Background: The assessment of upper-limb motor impairments after stroke is usually performed using clinical scales and tests, which may lack accuracy and specificity and be biased. Although some instruments exist that are capable of evaluating hand functions and grasping during functional tasks, hand mobility and dexterity are generally either not specifically considered during clinical assessments or these examinations lack accuracy. This study aimed to determine the convergent validity, reliability, and sensitivity to impairment severity after a stroke of a dedicated, multi-touch app, named the Hand Assessment Test. Methods: The hand mobility, coordination, and function of 88 individuals with stroke were assessed using the app, and their upper-limb functions were assessed using the Fugl-Meyer Assessment for Upper Extremity, the Jebsen-Taylor Hand Function Test, the Box and Block Test, and the Nine Hole Peg Test. Twenty-three participants were further considered to investigate inter- and intra-rater reliability, standard error of measurement, and the minimal detectable change threshold of the app. Finally, participants were categorized according to motor impairment severity and the sensitivity of the app relative to these classifications was investigated. Results: Significant correlations, of variable strengths, were found between the measurements performed by the app and the clinical scales and tests. Variable reliability, ranging from moderate to excellent, was found for all app measurements. Exercises that involved tapping and maximum finger-pincer grasp were sensitive to motor impairment severity. Conclusions: The convergent validity, reliability, and sensitivity to motor impairment severity of the app, especially of those exercises that involved tapping and the maximum extension of the fingers, together with the widespread availability of the app, could support the use of this and similar apps to complement conventional clinical assessments of hand function after stroke. es_ES
dc.description.sponsorship This study has been co-funded by Fundacio la Marato de la TV3 (201701-10), the European Union through the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029), and Universitat de Valencia (INV19-01-13-07) es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Journal of NeuroEngineering and Rehabilitation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject App es_ES
dc.subject Assessment es_ES
dc.subject Hand es_ES
dc.subject Multi-touch technology es_ES
dc.subject Stroke es_ES
dc.subject Upper-limb es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Validity, reliability, and sensitivity to motor impairment severity of a multi-touch app designed to assess hand mobility, coordination, and function after stroke es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12984-021-00865-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV//IDIFEDER%2F2018%2F029/
dc.relation.projectID info:eu-repo/grantAgreement/UV//INV19-01-13-07/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.description.bibliographicCitation Mollà-Casanova, S.; Llorens Rodríguez, R.; Borrego, A.; Salinas-Martinez, B.; Serra-Añó, P. (2021). Validity, reliability, and sensitivity to motor impairment severity of a multi-touch app designed to assess hand mobility, coordination, and function after stroke. Journal of NeuroEngineering and Rehabilitation. 18(1):1-15. https://doi.org/10.1186/s12984-021-00865-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12984-021-00865-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33892763 es_ES
dc.identifier.pmcid PMC8066975 es_ES
dc.relation.pasarela S\438071 es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat de València
dc.contributor.funder European Regional Development Fund
dc.description.references Tomita Y, Rodrigues MRM, Levin MF. Upper limb coordination in individuals with stroke: poorly defined and poorly quantified. Neurorehabil Neural Repair. 2017;31:885–97. es_ES
dc.description.references Kizony R, Zeilig G, Dudkiewicz I, Schejter-Margalit T, Rand D. Tablet apps and dexterity: comparison between 3 age groups and proof of concept for stroke rehabilitation. J Neurol Phys Ther. 2016;40:31–9. es_ES
dc.description.references Raghavan P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am. 2015;26:599–610. es_ES
dc.description.references Shirota C, Jansa J, Diaz J, Balasubramanian S, Mazzoleni S, Borghese NA, et al. On the assessment of coordination between upper extremities: towards a common language between rehabilitation engineers, clinicians and neuroscientists. J Neuroeng Rehabil. 2016;13:80. es_ES
dc.description.references Kisiel-Sajewicz K, Fang Y, Hrovat K, Yue GH, Siemionow V, Sun CK, et al. Weakening of synergist muscle coupling during reaching movement in stroke patients. Neurorehabil Neural Repair. 2011;25:359–68. es_ES
dc.description.references Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26:104–15. es_ES
dc.description.references Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16:232–40. es_ES
dc.description.references Mathiowetz V, Federman S, Wiemer D. Box and block test of manual dexterity: norms for 6–19 year olds. Can J Occup Ther. 1985;52:241–5. es_ES
dc.description.references Barreca S, Gowland C, Stratford P, Huijbregts M, Griffiths J, Torresin W, et al. Development of the Chedoke Arm and Hand Activity Inventory: theoretical constructs, item generation, and selection. Top Stroke Rehabil. 2004;11:31–42. es_ES
dc.description.references Lawson I. Purdue Pegboard Test. Occup Med (Chic Ill). 2019;69:376–7. es_ES
dc.description.references Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4:483–92. es_ES
dc.description.references Barreca SR, Stratford PW, Masters LM, Lambert CL, Griffiths J, McBay C. Validation of three shortened versions of the Chedoke Arm and Hand Activity Inventory. Physiother Can. 2006;58:148–56. es_ES
dc.description.references Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM. The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch Phys Med Rehabil. 2001;82:14–9. es_ES
dc.description.references Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as outcome measure for research in patients after stroke. Stroke. 2001;32:1635–9. es_ES
dc.description.references Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9. es_ES
dc.description.references Mathiowetz V, Weber K, Kashman N, Volland G. Adult norms for the nine hole peg test of finger dexterity. Occup Ther J Res. 1985;5:24–38. es_ES
dc.description.references Platz T, Lotze M. Arm Ability Training (AAT) promotes dexterity recovery after a stroke—a review of its design, clinical effectiveness, and the neurobiology of the actions. Front Neurol. 2018. https://doi.org/10.3389/fneur.2018.01082. es_ES
dc.description.references Eschmann H, Héroux ME, Cheetham JH, Potts S, Diong J. Thumb and finger movement is reduced after stroke: an observational study. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0217969. es_ES
dc.description.references Taylor CL, Schwarz RJ. The anatomy and mechanics of the human hand. Artif Limbs. 1955;2:22–35. es_ES
dc.description.references Metzger JC, Lambercy O, Califfi A, Dinacci D, Petrillo C, Rossi P, et al. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. J Neuroeng Rehabil. 2014;11:154. es_ES
dc.description.references Taheri H, Rowe JB, Gardner D, Chan V, Gray K, Bower C, et al. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play. J Neuroeng Rehabil. 2014;11:10. es_ES
dc.description.references Carmeli E, Peleg S, Bartur G, Elbo E, Vatine JJ. HandTutor™ enhanced hand rehabilitation after stroke—a pilot study. Physiother Res Int. 2011;16:191–200. es_ES
dc.description.references Germanotta M, Gower V, Papadopoulou D, Cruciani A, Pecchioli C, Mosca R, et al. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. J Neuroeng Rehabil. 2020;17:1. es_ES
dc.description.references Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76. es_ES
dc.description.references Varalta V, Picelli A, Fonte C, Montemezzi G, La Marchina E, Smania N. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: a case series study. J Neuroeng Rehabil. 2014;11:160. es_ES
dc.description.references Shin JH, Kim MY, Lee JY, Jeon YJ, Kim S, Lee S, et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil. 2016;13:17. es_ES
dc.description.references McDermott EJ, Himmelbach M. Effects of arm weight and target height on hand selection: a low-cost virtual reality paradigm. PLoS ONE. 2019;14:e0207326. es_ES
dc.description.references Colomer C, Llorens R, Noé E, Alcañiz M. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil. 2016. https://doi.org/10.1186/s12984-016-0153-6. es_ES
dc.description.references Walker G. A review of technologies for sensing contact location on the surface of a display. J Soc Inf Disp. 2012;20:413–40. es_ES
dc.description.references White JH, Janssen H, Jordan L, Pollack M. Tablet technology during stroke recovery: a survivor’s perspective. Disabil Rehabil. 2015;37:1186–92. es_ES
dc.description.references Kotzian ST, Haider S, Grabovac I, Schubert N, Josef S. Successful performance of basic gestures in tablet technology in post stroke patients: a feasibility study. Technol Health Care. 2019;27:613–22. es_ES
dc.description.references Schallert W, Fluet MC, Kesselring J, Kool J. Evaluation of upper limb function with digitizing tablet-based tests: reliability and discriminative validity in healthy persons and patients with neurological disorders. Disabil Rehabil. 2020. https://doi.org/10.1080/09638288.2020.1800838. es_ES
dc.description.references Grimby G, Andrén E, Daving Y, Wright B. Dependence and perceived difficulty in daily activities in community-living stroke survivors 2 years after stroke: a study of instrumental structures. Stroke. 1998;29:1843–9. es_ES
dc.description.references Fritz SL, Light KE, Patterson TS, Behrman AL, Davis SB. Active finger extension predicts outcomes after constraint-induced movement therapy for individuals with hemiparesis after stroke. Stroke. 2005;36:1172–7. es_ES
dc.description.references Borrego A, Llorens R. Hand Assessment Test app [Internet]. Available from https://play.google.com/store/apps/details?id=com.NRHB.VAL&hl=es. es_ES
dc.description.references Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing. 2000;29:223–8. es_ES
dc.description.references Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. es_ES
dc.description.references Pandyan AD, Johnson GR, Price CIM, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin Rehabil. 1999;13:373–83. es_ES
dc.description.references Romero M, Sánchez A, Marín C, Navarro MD, Ferri J, Noé E. Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurología (English Edition). 2012;27:216–24. es_ES
dc.description.references World Health Organization. Towards a common language for functioning, disability and health: ICF. International Classification of Functioning, Disability and Health. 2002. https://www.who.int/classifications/icf/icfbeginnersguide.pdf. es_ES
dc.description.references Fugl Meyer AR, Jaasko L, Leyman I. The post stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31. es_ES
dc.description.references Llorens R, Latorre J, Noé E, Keshner EA. Posturography using the Wii Balance Board™. A feasibility study with healthy adults and adults post-stroke. Gait Posture. 2016;43:228–32. es_ES
dc.description.references Latorre J, Colomer C, Alcañiz M, Llorens R. Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J Neuroeng Rehabil. 2019. https://doi.org/10.1186/s12984-019-0568-y. es_ES
dc.description.references Wuensch KL, Evans JD. Straightforward statistics for the behavioral sciences. J Am Stat Assoc. 1996. https://doi.org/10.2307/2291607. es_ES
dc.description.references Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Con Res. 2005;19:231–40. es_ES
dc.description.references Woodbury ML, Velozo CA, Richards LG, Duncan PW. Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch Phys Med Rehabil. 2013;94:1527–33. es_ES
dc.description.references Calautti C, Jones PS, Persaud N, Guincestre JY, Naccarato M, Warburton EA, et al. Quantification of index tapping regularity after stroke with tri-axial accelerometry. Brain Res Bull. 2006;70:1–7. es_ES
dc.description.references Birchenall J, Térémetz M, Roca P, Lamy JC, Oppenheim C, Maier MA, et al. Individual recovery profiles of manual dexterity, and relation to corticospinal lesion load and excitability after stroke—a longitudinal pilot study. Neurophysiol Clin. 2019;49:149–64. es_ES
dc.description.references De Groot-Driessen D, Van De Sande P, Van Heugten C. Speed of finger tapping as a predictor of functional outcome after unilateral stroke. Arch Phys Med Rehabil. 2006;87:40–4. es_ES
dc.description.references Jorge A, Royston DA, Tyler-Kabara EC, Boninger ML, Collinger JL. Classification of individual finger movements using intracortical recordings in Human Motor Cortex. Neurosurgery. 2020;87:630–8. es_ES
dc.description.references Steyers CM. Rehabilitation of the hand and upper extremity. 5th ed. 7th ed. J Bone Jt Surg Am. 2003. https://doi.org/10.2106/00004623-200309000-00042. es_ES
dc.description.references Hayes JR, Flower LS. Identifying the organisation of the writing process. In: Greg LN, Steinberg ER, editors. Cognitive processes in writing. Routledge: London; 1980. p. 3–30. es_ES
dc.description.references Decker SL, Roberts AM, Roberts KL, Stafford AL, Eckert MA. Cognitive components of developmental writing skill. Psychol Sch. 2016;53(6):617–25. https://doi.org/10.1002/pits.21933 es_ES
dc.description.references Anderson H, Bland M, Byl N, Capo-Lugo C, Rose D, Sulwer M, et al. StrokEDGE II outcome measures inpatient and outpatient rehabilitation. 2018. es_ES
dc.description.references Gracia-Ibáñez V, Sancho-Bru JL, Vergara M. Relevance of grasp types to assess functionality for personal autonomy. J Hand Ther. 2018;31:102–10. es_ES
dc.description.references Klymenko G, Liu KPY, Bissett M, Fong KNK, Welage N, Wong RSM. Development and initial validity of the in-hand manipulation assessment. Aust Occup Ther J. 2018;65:135–45. es_ES
dc.description.references García Álvarez A, Roby-Brami A, Robertson J, Roche N. Functional classification of grasp strategies used by hemiplegic patients. PLoS ONE. 2017;12:e0187608. es_ES
dc.description.references Franck JA, Smeets RJEM, Seelen HAM. Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation. PLoS ONE. 2017;12:e0179453. es_ES
dc.description.references Nijenhuis SM, Prange-Lasonder GB, Fleuren JF, Wagenaar J, Buurke JH, Rietman JS. Strong relations of elbow excursion and grip strength with post-stroke arm function and activities: should we aim for this in technology-supported training? J Rehabil Assist Technol Eng. 2018;5:205566831877930. es_ES
dc.description.references Israely S, Carmeli E. Handwriting performance versus arm forward reach and grasp abilities among post-stroke patients, a case-control study. Top Stroke Rehabil. 2017;24:1–7. es_ES
dc.description.references Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015. https://doi.org/10.1016/j.apmr.2014.10.019. es_ES
upv.costeAPC 2837,45 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem