- -

A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantó Colomina, Begoña es_ES
dc.contributor.author Cantó Colomina, Rafael es_ES
dc.contributor.author Urbano Salvador, Ana María es_ES
dc.date.accessioned 2022-02-07T08:28:50Z
dc.date.available 2022-02-07T08:28:50Z
dc.date.issued 2021-06-18 es_ES
dc.identifier.isbn 978-84-18482-21-2 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180543
dc.description.abstract [EN] Let A¿Rn×n be an irreducible totally nonnegative matrix (ITN), that is, A is irreducible with all its minors nonnegative. A triple (n,r,p) is called realizable if there exists an ITN matrix A¿Rn×n with rank(A)=r and p-rank(A)=p (recall that p-rank(A) is the size of the largest invertible principal submatrix of A). Each ITN matrix associated with a realizable triple (n,r,p) has positive and distinct eigenvalues, and for the zero eigenvalue it is verified that n¿r and n¿p are the geometric and the algebraic multiplicity, respectively. Moreover, since rank(A)=r, has n¿r zero Jordan blocks whose sizes are given by the Segre characteristic, S= (s1, s2,.. . , s_n-r ), with s_i¿ p, i = 1, 2, . . . , n¿r. We know the number of zero Jordan canonical forms of ITN matrices associated with a realizable triple (n,r,p) and all these zero Jordan canonical forms. The following important question that we present in this talk deals with how to construct an ITN matrix associated with (n,r,p) and exactly with one of these Segre characteristic S corresponding to the zero eigenvalue. es_ES
dc.description.sponsorship This work has been supported by the Ministerio de Economía y Competitividad under the Spanish DGI grant MTM2017-85669-P-AR. es_ES
dc.language Inglés es_ES
dc.publisher Servicio de Publicaciones de la Universidad de Oviedo es_ES
dc.relation.ispartof Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Irreducible totally nonnegative matrix es_ES
dc.subject Triple realizable es_ES
dc.subject Eigenvalues es_ES
dc.subject Segre characteristic es_ES
dc.subject Jordan blocks es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cantó Colomina, B.; Cantó Colomina, R.; Urbano Salvador, AM. (2021). A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form. Servicio de Publicaciones de la Universidad de Oviedo. 352-358. http://hdl.handle.net/10251/180543 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA) / XVI Congreso de Matemática Aplicada (CMA) = XXVI Congress on Differential Equations and Applications / XVI Congress on Applied Mathematics es_ES
dc.relation.conferencedate Junio 14-18,2021 es_ES
dc.relation.conferenceplace Gijón, España es_ES
dc.relation.publisherversion http://hdl.handle.net/10651/59045 es_ES
dc.description.upvformatpinicio 352 es_ES
dc.description.upvformatpfin 358 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\441448 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem