Mostrar el registro sencillo del ítem
dc.contributor.author | Cantó Colomina, Begoña | es_ES |
dc.contributor.author | Cantó Colomina, Rafael | es_ES |
dc.contributor.author | Urbano Salvador, Ana María | es_ES |
dc.date.accessioned | 2022-02-07T08:28:50Z | |
dc.date.available | 2022-02-07T08:28:50Z | |
dc.date.issued | 2021-06-18 | es_ES |
dc.identifier.isbn | 978-84-18482-21-2 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180543 | |
dc.description.abstract | [EN] Let A¿Rn×n be an irreducible totally nonnegative matrix (ITN), that is, A is irreducible with all its minors nonnegative. A triple (n,r,p) is called realizable if there exists an ITN matrix A¿Rn×n with rank(A)=r and p-rank(A)=p (recall that p-rank(A) is the size of the largest invertible principal submatrix of A). Each ITN matrix associated with a realizable triple (n,r,p) has positive and distinct eigenvalues, and for the zero eigenvalue it is verified that n¿r and n¿p are the geometric and the algebraic multiplicity, respectively. Moreover, since rank(A)=r, has n¿r zero Jordan blocks whose sizes are given by the Segre characteristic, S= (s1, s2,.. . , s_n-r ), with s_i¿ p, i = 1, 2, . . . , n¿r. We know the number of zero Jordan canonical forms of ITN matrices associated with a realizable triple (n,r,p) and all these zero Jordan canonical forms. The following important question that we present in this talk deals with how to construct an ITN matrix associated with (n,r,p) and exactly with one of these Segre characteristic S corresponding to the zero eigenvalue. | es_ES |
dc.description.sponsorship | This work has been supported by the Ministerio de Economía y Competitividad under the Spanish DGI grant MTM2017-85669-P-AR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Servicio de Publicaciones de la Universidad de Oviedo | es_ES |
dc.relation.ispartof | Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Irreducible totally nonnegative matrix | es_ES |
dc.subject | Triple realizable | es_ES |
dc.subject | Eigenvalues | es_ES |
dc.subject | Segre characteristic | es_ES |
dc.subject | Jordan blocks | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cantó Colomina, B.; Cantó Colomina, R.; Urbano Salvador, AM. (2021). A method to construct irreducible totally nonnegative matrices with a given Jordan canonical form. Servicio de Publicaciones de la Universidad de Oviedo. 352-358. http://hdl.handle.net/10251/180543 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA) / XVI Congreso de Matemática Aplicada (CMA) = XXVI Congress on Differential Equations and Applications / XVI Congress on Applied Mathematics | es_ES |
dc.relation.conferencedate | Junio 14-18,2021 | es_ES |
dc.relation.conferenceplace | Gijón, España | es_ES |
dc.relation.publisherversion | http://hdl.handle.net/10651/59045 | es_ES |
dc.description.upvformatpinicio | 352 | es_ES |
dc.description.upvformatpfin | 358 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\441448 | es_ES |