Huerta, A.; Martínez-Rodrigo, A.; Bertomeu González, V.; Quesada, A.; Rieta, JJ.; Alcaraz, R. (2019). Quality Assessment of Very Long-Term ECG Recordings Using a Convolutional Neural Network. IEEE. 1-4. https://doi.org/10.1109/EHB47216.2019.8970077
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180560
Título:
|
Quality Assessment of Very Long-Term ECG Recordings Using a Convolutional Neural Network
|
Autor:
|
Huerta, A.
Martínez-Rodrigo, A.
Bertomeu González, V.
Quesada, A.
Rieta, J J
Alcaraz, R.
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
|
Fecha difusión:
|
|
Resumen:
|
[EN] The electrocardiogram (ECG) is a physiological signal highly sensitive to disturbances during its acquisition. To palliate this issue, many works have described preprocessing algorithms operating in 12-lead, short-term ...[+]
[EN] The electrocardiogram (ECG) is a physiological signal highly sensitive to disturbances during its acquisition. To palliate this issue, many works have described preprocessing algorithms operating in 12-lead, short-term ECG recordings. However, only a few methods have been introduced to detect noisy segments in single-lead, long-term ECG signals, this being a pending challenge to be resolved. Hence, this work proposes a novel technique to automatically detect low-quality segments in single-lead, long-term ECG recordings. The method is based on the high learning capability of a convolutional neural network (CNN), which has been trained with 2D images obtained when turning ECG recordings into scalograms using a continuous Wavelet transform (CWT). To validate the method, a publicly available dataset containing single-lead, long-term ECG intervals from patients with different cardiac rhythms has been used. These signals have been annotated by experts, who identified noisy intervals and those with sufficient quality to be clinically interpreted. The results have shown that the proposed method discriminates correctly between low and high-quality ECG segments with an accuracy greater than 90%, and with sensitivity slightly larger than specificity.
[-]
|
Palabras clave:
|
Electrocardiogram
,
Convolutional neural network
,
Noise
,
Quality assessment
|
Derechos de uso:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-7281-2603-6
|
Fuente:
|
2019 E-Health and Bioengineering Conference (EHB).
|
DOI:
|
10.1109/EHB47216.2019.8970077
|
Editorial:
|
IEEE
|
Versión del editor:
|
https://doi.org/10.1109/EHB47216.2019.8970077
|
Título del congreso:
|
International Conference on e-Health and Bioengineering (EHB 2019)
|
Lugar del congreso:
|
Iasi, Romania
|
Fecha congreso:
|
Noviembre 21-23,2019
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/
info:eu-repo/grantAgreement///SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/
info:eu-repo/grantAgreement/FEDER//2018%2F11744/
info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/
|
Agradecimientos:
|
This work has been funded by projects DPI2007-83952-C3
from MINECO/AEI/FEDER EU, SBPLY/17/180501000411
from Junta de Castilla la Mancha, AICO/2019/036 from
Generalitat Valenciana, and grand 2018/11744 from
European Regional ...[+]
This work has been funded by projects DPI2007-83952-C3
from MINECO/AEI/FEDER EU, SBPLY/17/180501000411
from Junta de Castilla la Mancha, AICO/2019/036 from
Generalitat Valenciana, and grand 2018/11744 from
European Regional Development Fund (FEDER, UE).
[-]
|
Tipo:
|
Comunicación en congreso
Capítulo de libro
|