- -

Predicting Electrical Cardioversion Outcome in Persistent Atrial Fibrillation Through Multiscale Entropy Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting Electrical Cardioversion Outcome in Persistent Atrial Fibrillation Through Multiscale Entropy Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cirugeda, E. es_ES
dc.contributor.author Plancha, E. es_ES
dc.contributor.author Hidalgo, V.M. es_ES
dc.contributor.author Calero, S. es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, R. es_ES
dc.date.accessioned 2022-02-07T08:29:27Z
dc.date.available 2022-02-07T08:29:27Z
dc.date.issued 2019-11-23 es_ES
dc.identifier.isbn 978-1-7281-2603-6 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180570
dc.description.abstract [EN] Atrial Fibrillation (AF) is the most commonly sustained cardiac arrhythmia and the major cause of cardiovascular morbidity and mortality. Because of its wide availability and initial effectiveness, electrical cardioversion (ECV) is the primary method used for reverting this arrhythmia to normal sinus rhythm (NSR). However, this procedure presents some collateral effects, and barely 80% of the patients prevail in NSR after 1 month. Thus, being able to predict the outcome of ECV before its application is of great interest in clinical practice, so cardiac complications in patients with high probability of early AF recurrence could be prevented. For that purpose, this work characterizes atrial activity (AA) in patients with persistent AF, before ECV, by means of nonlinear multiscale dynamics, particularly composite multiscale entropy (CMSE), and compares its performance with other recently used parameters, such as, dominant atrial frequency, AA¿s amplitude and sample entropy. The results show that characterizing AA by means of CMSE predicts ECV outcome with an accuracy above 90%, whereas the remaining parameters only forecast correctly about 70% of the analyzed patients. As a conclusion, using complexity techniques at different time scales for AA characterization increases the probability of correctly predicting AF recurrence. es_ES
dc.description.sponsorship This work has been funded by projects: DPI2007-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501000411 from Junta de Castilla la Mancha and AICO/2019/036 from Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2019 E-Health and Bioengineering Conference (EHB) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Electrical cardioversion es_ES
dc.subject Composite multiscale entropy es_ES
dc.subject Sample entropy (SampEn) es_ES
dc.subject Atrial activity es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Predicting Electrical Cardioversion Outcome in Persistent Atrial Fibrillation Through Multiscale Entropy Analysis es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB47216.2019.8969889 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cirugeda, E.; Plancha, E.; Hidalgo, V.; Calero, S.; Rieta, JJ.; Alcaraz, R. (2019). Predicting Electrical Cardioversion Outcome in Persistent Atrial Fibrillation Through Multiscale Entropy Analysis. IEEE. 1-4. https://doi.org/10.1109/EHB47216.2019.8969889 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on e-Health and Bioengineering (EHB 2019) es_ES
dc.relation.conferencedate Noviembre 21-23,2019 es_ES
dc.relation.conferenceplace Iasi, Romania es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB47216.2019.8969889 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\411502 es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem