- -

Mapping the scientific structure of organization and management of enterprises using complex networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mapping the scientific structure of organization and management of enterprises using complex networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olivares-Gil, Alicia es_ES
dc.contributor.author Arnaiz-Rodríguez, Adrián es_ES
dc.contributor.author Ramírez-Sanz, José Miguel es_ES
dc.contributor.author Garrido-Labrador, José Luis es_ES
dc.contributor.author Ahedo, Virginia es_ES
dc.contributor.author García-Osorio, César es_ES
dc.contributor.author Santos, José Ignacio es_ES
dc.contributor.author Galán, José Manuel es_ES
dc.date.accessioned 2022-02-07T10:10:03Z
dc.date.available 2022-02-07T10:10:03Z
dc.date.issued 2022-01-31
dc.identifier.uri http://hdl.handle.net/10251/180595
dc.description.abstract [EN] Understanding the scientific and social structure of a discipline is a fundamental aspect for scientific evaluation processes, identifying trends and niches, and balancing the trade-off between exploitation and exploration in research. In the present contribution, the production of doctoral theses is used as a proxy to analyze the scientific structure of the knowledge area of business organization in Spain. To that end, a complex networks approach is selected, and two different networks are built: (i) the social network of co-participation in thesis examining committees and thesis supervision, and (ii) a bipartite network of theses and thesis descriptors. The former has a modular structure that is partially explained by thematic specialization in different subdisciplines. The latter serves to assess the interdisciplinary structure of the discipline, as it enables the characterization of affinity levels between fields, research poles and thematic clusters. Our results have implications for the scientific evaluation and formal definition of related fields. es_ES
dc.description.sponsorship The authors acknowledge financial support from the and Spanish Ministry of Science, Innovation Universities (RED2018-102518-T), the Spanish State Research Agency (PID2020118906GB-I00 and PID2020-119894GB-I00 via AEI/10.13039/501100011033), the Junta de Castilla y León – Consejería de Educación (BU055P20), Fundación La Caixa (2020/00062/001) and from NVIDIA Corporation and its donation of the TITAN Xp GPUs that facilitated this research. This work was partially supported by the European Social Fund, as the authors José Miguel Ramírez-Sanz, José Luis Garrido-Labrador and Alicia OlivaresGil are the recipient of a predoctoral grant from the Department of Education of Junta de Castilla y León (VA) (ORDEN EDU/875/2021). In addition, this work was also partially supported by the Generalitat Valenciana via its Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, as Adrián Arnaiz is recipicient of a predoctoral grant. The authors would also like to thank Dr. Manzanedo, Dra. Saiz-Bárcena, Dr. Solé Parellada, Dr. Izquierdo and Dr. del Olmo for their insightful help to improve the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Complex networks es_ES
dc.subject Community detection es_ES
dc.subject Doctoral theses es_ES
dc.subject Pattern recognition es_ES
dc.subject Interdisciplinarity es_ES
dc.subject Organization and management of enterprises es_ES
dc.title Mapping the scientific structure of organization and management of enterprises using complex networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2022.16666
dc.relation.projectID info:eu-repo/grantAgreement/MICIU//RED2018-102518-T/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119894GB-I00/ES/APRENDIZAJE AUTOMATICO CON DATOS ESCASAMENTE ETIQUETADOS PARA LA INDUSTRIA 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020118906GB-I00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCYL//BU055P20/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//2020/00062/001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCYL//EDU/875/2021/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Olivares-Gil, A.; Arnaiz-Rodríguez, A.; Ramírez-Sanz, JM.; Garrido-Labrador, JL.; Ahedo, V.; García-Osorio, C.; Santos, JI.... (2022). Mapping the scientific structure of organization and management of enterprises using complex networks. International Journal of Production Management and Engineering. 10(1):65-76. https://doi.org/10.4995/ijpme.2022.16666 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2022.16666 es_ES
dc.description.upvformatpinicio 65 es_ES
dc.description.upvformatpfin 76 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\16666 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Junta de Castilla y León es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Nvidia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Social Fund
dc.description.references Barabási, A. ., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and Its Applications, 311(3-4), 590-614. https://doi.org/10.1016/S0378-4371(02)00736-7 es_ES
dc.description.references Bascompte, J. (2007). Networks in ecology. Basic and Applied Ecology, 8(6), 485-490. https://doi.org/10.1016/j.baae.2007.06.003 es_ES
dc.description.references Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008 es_ES
dc.description.references Castelló i Cogollos, L. C., Bueno Cañigral, F. J., & Valderrama Zurián, J. C. (2019). Análisis de redes sociales y bibliométrico de las tesis españolas sobre drogodependencias en la base de datos TESEO. Adicciones, 31(4), 309-323. https://doi.org/10.20882/adicciones.1150 es_ES
dc.description.references Cheng, F., Kovács, I. A., & Barabási, A.-L. (2019). Network-based prediction of drug combinations. Nature Communications, 10(1), 1197. https://doi.org/10.1038/s41467-019-09186-x es_ES
dc.description.references Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1-44. https://doi.org/10.1016/j.physrep.2016.09.002 es_ES
dc.description.references Garrido-Labrador, J. L., Ramírez-Sanz, J. M., Ahedo, V., Arnaiz-Rodríguez, A., García-Osorio, C., Santos, J. I., & Galán, J. M. (2021). Network analysis of co-participation in thesis examination committees in an academic field in Spain. Dirección y Organización. es_ES
dc.description.references Grossman, W. J. (1997). Paul Erdos: The master of collaboration. Algorithms and Combinatorics, 14, 467-475. es_ES
dc.description.references Havlin, S., Kenett, D. Y., Ben-Jacob, E., Bunde, A., Cohen, R., Hermann, H., … Solomon, S. (2012). Challenges in network science: Applications to infrastructures, climate, social systems and economics. The European Physical Journal Special Topics, 214(1), 273-293. https://doi.org/10.1140/epjst/e2012-01695-x es_ES
dc.description.references Latora, V., Nicosia, V., & Russo, G. (2017). Complex Networks. Principles, Methods and Applications. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316216002 es_ES
dc.description.references Martínez-Frías, J., & Hochberg, D. (2007). Classifying science and technology: Two problems with the UNESCO system. Interdisciplinary Science Reviews, 32(4), 315-319. https://doi.org/10.1179/030801807X183605 es_ES
dc.description.references Mata, A. S. da. (2020). Complex Networks: a Mini-review. Brazilian Journal of Physics, 50(5), 658-672. https://doi.org/10.1007/s13538-020-00772-9 es_ES
dc.description.references Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 8. https://doi.org/10.1103/PhysRevE.64.016131 es_ES
dc.description.references Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 7. https://doi.org/10.1103/PhysRevE.64.016132 es_ES
dc.description.references Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. https://doi.org/10.1073/pnas.98.2.404 es_ES
dc.description.references Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256. https://doi.org/10.1137/S003614450342480 es_ES
dc.description.references Newman, M. E. J. (2018). Networks. Oxford, UK: Oxford University Press. https://doi.org/10.1093/oso/9780198805090.001.0001 es_ES
dc.description.references Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. https://doi.org/10.1103/RevModPhys.87.925 es_ES
dc.description.references Price, D. J. S. (1965). Networks of Scientific Papers. Science, 149(3683), 510-515. https://doi.org/10.1126/science.149.3683.510 es_ES
dc.description.references Repiso, R., Torres, D., & Delgado, E. (2011). Análisis bibliométrico y de redes sociales en tesis doctorales españolas sobre televisión (1976/2007). (Spanish). Comunicar, 18(37), 151-159. https://doi.org/10.3916/C37-2011-03-07 es_ES
dc.description.references Rodrigues, F. A. (2019). Network Centrality: An Introduction. In E. E. N. Macau (Ed.), A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems (pp. 177-196). Springer. https://doi.org/10.1007/978-3-319-78512-7_10 es_ES
dc.description.references Ruiz-Martin, C., Ramirez-Ferrero, M., Gonzalez-Alvarez, J. L., & López-Paredes, A. (2015). Modeling of a Nuclear Emergency Plan: Communication Management. Human and Ecological Risk Assessment: An International Journal, 21(5), 1152-1168. https://doi.org/10.1080/10807039.2014.955383 es_ES
dc.description.references Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic Networks: The New Challenges. Science, 325(5939), 422-425. https://doi.org/10.1126/science.1173644 es_ES
dc.description.references Sedighi, M. (2016). Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of Informetrics). Library Review, 65(1-2), 52-64. https://doi.org/10.1108/LR-07-2015-0075 es_ES
dc.description.references UNESCO, N. (1988). Proposed international standard nomenclature for fields of science & technology. Paris: United Nations Educational, Scientific and Cultural Organization. es_ES
dc.description.references Villarroya, A., Barrios, M., Borrego, A., & Frías, A. (2008). PhD theses in Spain: A gender study covering the years 1990-2004. Scientometrics, 77(3), 469-483. https://doi.org/10.1007/s11192-007-1965-8 es_ES
dc.description.references Watts, D. J. (1999). Small World. Princeton, NJ: Princeton University Press. https://doi.org/10.1515/9780691188331 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem