- -

Parallel border tracking in binary images using GPUs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallel border tracking in binary images using GPUs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Mollá, Víctor Manuel es_ES
dc.contributor.author Alonso-Jordá, Pedro es_ES
dc.contributor.author García-Laguía, Ricardo es_ES
dc.date.accessioned 2022-02-09T19:04:27Z
dc.date.available 2022-02-09T19:04:27Z
dc.date.issued 2020-01-19 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180666
dc.description.abstract [EN] Border tracking in binary images is an important kernel for many applications. There are very efficient sequential algorithms, most notably, the algorithm proposed by Suzuki et al., which has been implemented for CPUs in well-known libraries. However, under some circumstances, it would be advantageous to perform the border tracking in GPUs as efficiently as possible. In this paper, we propose a parallel version of the Suzuki algorithm that is designed to be executed in GPUs and implemented in CUDA. The proposed algorithm is based on splitting the image into small rectangles. Then, a thread is launched for each rectangle, which tracks the borders in its associated rectangle. The final step is to perform the connection of the borders belonging to several rectangles. The parallel algorithm has been compared with a state-of-the-art sequential CPU version, using two different CPUs and two different GPUs for the evaluation. The computing times obtained show that in these experiments with the GPUs and CPUs that we had available, the proposed parallel algorithm running in the fastest GPU is more than 10 times faster than the sequential CPU routine running in the fastest CPU. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities and the European Union through Grant RTI2018-098085-BC41 (MCUI/AEI/FEDER) and by GVA through PROMETEO/2019/109. The authors would also like to thank the AUTIS, S.L. company for their support of this work. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Border tracking es_ES
dc.subject Parallel computing es_ES
dc.subject GPU computing es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Parallel border tracking in binary images using GPUs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-021-04260-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation García Mollá, VM.; Alonso-Jordá, P.; García-Laguía, R. (2020). Parallel border tracking in binary images using GPUs. The Journal of Supercomputing. https://doi.org/10.1007/s11227-021-04260-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-021-04260-y es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\454399 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Leinio A, Lellis L, Cappabianco F (2019) Interactive border contour with automatic tracking algorithm selection for medical images: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19–22, 2018, Proceedings, 2019, pp 748–756. https://doi.org/10.1007/978-3-030-13469-3_87 es_ES
dc.description.references Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33:898–916. https://doi.org/10.1109/TPAMI.2010.161 es_ES
dc.description.references Olszewska J (2015) Active contour based optical character recognition for automated scene understanding. Neurocomputing. https://doi.org/10.1016/j.neucom.2014.12.089 es_ES
dc.description.references Soares de Oliveira L, Sabourin R, Bortolozzi F, Suen C (2002) Automatic recognition of handwritten numerical strings: a recognition and verification strategy. IEEE Trans Pattern Anal Mach Intell 24:1438–1454 es_ES
dc.description.references Bradski G (2000) The OpenCV library. Dr Dobb’s J Softw Tools 25:120–123 es_ES
dc.description.references Versaci M, Calcagno S, Morabito FC (2015) Fuzzy geometrical approach based on unit hyper-cubes for image contrast enhancement. In: IEEE International Conference on Signal and Image Processing Applications (ICSIPA) 2015:488–493. https://doi.org/10.1109/ICSIPA.2015.7412240 es_ES
dc.description.references Suzuki S, Abe K (1985) Topological structural analysis of digitized binary images by border following. Comput Vis Graph Image Process 30:32–46 es_ES
dc.description.references NVIDIA Corporation (2007) NVIDIA CUDA Compute Unified Device Architecture Programming Guide, NVIDIA Corporation es_ES
dc.description.references Pitas I (2000) Digital image processing algorithms and applications. Wiley, USA es_ES
dc.description.references Cheong C-H, Han T-D (2006) Improved simple boundary following algorithm. J KIISE Softw Appl 33:427–439 es_ES
dc.description.references Toussaint G (2015) Grids, connectivity and contour tracing. http://www-cgrl.cs.mcgill.ca/~godfried/teaching/pr-notes/contour.ps es_ES
dc.description.references Reddy P, Amarnadh V, Bhaskar M (2012) Evaluation of stopping criterion in contour tracing algorithms. Int J Comput Sci Inf Technol 3:3888–3894 es_ES
dc.description.references Seo J, Chae S, Shim J, Kim D-C, Cheong C, Han T (2016) Fast contour-tracing algorithm based on a pixel-following method for image sensors. Sensors Basel Switz 16:353 es_ES
dc.description.references Ren M, Yang J, Sun H (2002) Tracing boundary contours in a binary image. Image Vis Comput 20:125–131. https://doi.org/10.1016/S0262-8856(01)00091-9 es_ES
dc.description.references MATLABR (2018b) The MathWorks Inc.. Natick, Massachusetts, 2018 es_ES
dc.description.references Ferreira A, Ubéda S (1994) Ultra-fast parallel contour tracking, with applications to thinning. Pattern Recognit 27(7):867–878. https://doi.org/10.1016/0031-3203(94)90152-X es_ES
dc.description.references Cao M, Zhang F, Du Z, Liu R (2016) A parallel approach for contour extraction based on cuda platform. Int J Simul Syst Sci Technol 17:1.1-1.5. https://doi.org/10.5013/IJSSST.a.17.19.01 es_ES
dc.description.references Shin PJ, Gao X, Kleihorst R, Park J, Kak AC (2008) An efficient algorithm for the extraction of contours and curvature scale space on simd-powered smart cameras. In: Second ACM/IEEE International Conference on Distributed Smart Cameras 2008:1–10. https://doi.org/10.1109/ICDSC.2008.4635714 es_ES
dc.description.references Butt MU, Morris J, Patel N, Biglari-Abhari M (2015) Fast accurate contours for 3d shape recognition. In: IEEE Intelligent Vehicles Symposium (IV) 2015:832–838. https://doi.org/10.1109/IVS.2015.7225788 es_ES
dc.description.references Pavlidis T (1982) Algorithms for graphics and image processing. Springer, Berlin. https://doi.org/10.1007/978-3-642-93208-3 es_ES
dc.description.references Xeon e5-2697 v3@ 2.60ghz technical data. Accessed 06 Sept 2021. https://ark.intel.com/content/www/es/es/ark/products/81059/intel-xeon-processor-e5-2697-v3-35m-cache-2-60-ghz.html es_ES
dc.description.references Core(tm) i9-7960x cpu @2.80ghz technical data. Accessed 06 Sept 2021. https://www.intel.es/content/www/es/es/products/sku/126697/intel-core-i97960x-xseries-processor-22m-cache-up-to- 4-20-ghz/specifications.html es_ES
dc.description.references OpenMP v 4.5 specification (2015) http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem