- -

On the Feasibility of Distributed Process Mining in Healthcare

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Feasibility of Distributed Process Mining in Healthcare

Mostrar el registro completo del ítem

Gatta, R.; Vallati, M.; Lenkowicz, J.; Masciocchi, C.; Cellini, F.; Boldrini, L.; Fernández Llatas, C.... (2019). On the Feasibility of Distributed Process Mining in Healthcare. Springer. 445-452. https://doi.org/10.1007/978-3-030-22750-0_36

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180678

Ficheros en el ítem

Metadatos del ítem

Título: On the Feasibility of Distributed Process Mining in Healthcare
Autor: Gatta, Roberto Vallati, Mauro Lenkowicz, Jacopo Masciocchi, Carlota Cellini, Francesco Boldrini, Luca Fernández Llatas, Carlos Valentini, Vincenzo Damiani, Andrea
Fecha difusión:
Resumen:
[EN] Process mining is gaining significant importance in the healthcare domain, where the quality of services depends on the suitable and efficient execution of processes. A pivotal challenge for the application of process ...[+]
Palabras clave: Process mining , Healthcare , Distributed learning
Derechos de uso: Cerrado
ISBN: 978-3-030-22734-0
Fuente:
Computational Science - ICCS 2019. Lecture Notes in Computer Science. (issn: 0302-9743 )
DOI: 10.1007/978-3-030-22750-0_36
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-22750-0_36
Título del congreso: International Conference on Computational Science (ICCS 2019)
Lugar del congreso: Faro, Portugal
Fecha congreso: Junio 12-14,2019
Serie: Lecture Notes in Computer Science;11540
Tipo: Comunicación en congreso Artículo Capítulo de libro

References

van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)

van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19 [+]
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)

van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

Damiani, A., et al.: Distributed learning to protect privacy in multi-centric clinical studiest. In: Artificial Intelligence in Medicine (2015)

George, M., Selvarajan, S., Dkhar, S., Chandrasekaran, A.: Globalization of clinical trials - where are we heading? Curr. Clin. Pharmacol. 8(2), 115–123 (2013)

Gresham, G., Ehrhardt, S., Meinert, J., Appel, L., Meinert, C.: Characteristics and trends of clinical trials funded by the national institutes of health between 2005 and 2015. Clin. Trials 15(1), 65–74 (2018)

Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_3

Peterson, J.L.: Petri net theory and the modeling of systems (1981)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem