- -

Automatic Detection of Sensitive Information in Educative Social Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Detection of Sensitive Information in Educative Social Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Botti-Cebriá, Víctor es_ES
dc.contributor.author Del Val Noguera, Elena es_ES
dc.contributor.author García-Fornes, A es_ES
dc.date.accessioned 2022-02-10T08:42:53Z
dc.date.available 2022-02-10T08:42:53Z
dc.date.issued 2020-09-18 es_ES
dc.identifier.isbn 978-3-030-57804-6 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180685
dc.description.abstract [EN] Detecting sensitive information with privacy in mind is a relevant issue on Social Networks. It is often difficult for users to manage the privacy associated with their posts on social networks taking into account their possible consequences. The main objective of this work is to provide users information about the sensitivity of the information they will share when they decide to publish a message in online media. For this purpose, an assistant agent to detect sensitive information based on different types of categories detected in the message (i.e., location, personal data, health, personal attacks, emotions, etc.) is proposed. Entity recognition libraries, ontologies, dictionaries, and sentiment analysis will be used to detect the different categories. This agent is integrated into the social network Pesedia, aimed for children and teenagers, and through a soft-paternalism mechanism provides information to users about the sensitivity of certain content and help them in making decisions about its publication. The agent decision process will be evaluated with a dataset elaborated from messages of the social network Twitter. es_ES
dc.description.sponsorship This work is supported by the Spanish Government project TIN2017-89156-R. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020) es_ES
dc.relation.ispartofseries Advances in Intelligent Systems and Computing;1267 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Privacy es_ES
dc.subject Information sensitivity es_ES
dc.subject Social networks es_ES
dc.subject Classification es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Automatic Detection of Sensitive Information in Educative Social Networks es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-57805-3_18 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Botti-Cebriá, V.; Del Val Noguera, E.; García-Fornes, A. (2020). Automatic Detection of Sensitive Information in Educative Social Networks. Springer. 184-194. https://doi.org/10.1007/978-3-030-57805-3_18 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020) es_ES
dc.relation.conferencedate Septiembre 16-18,2020 es_ES
dc.relation.conferenceplace Burgos, España es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-57805-3_18 es_ES
dc.description.upvformatpinicio 184 es_ES
dc.description.upvformatpfin 194 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\421471 es_ES
dc.description.references Official legal text. https://gdpr-info.eu/ es_ES
dc.description.references Aghasian, E., Garg, S., Gao, L., Yu, S., Montgomery, J.: Scoring users’ privacy disclosure across multiple online social networks. IEEE Access 5, 13118–13130 (2017) es_ES
dc.description.references Aguado, G., Julian, V., Garcia-Fornes, A.: Towards aiding decision-making in social networks by using sentiment and stress combined analysis. Information 9(5), 107 (2018) es_ES
dc.description.references Alemany, J., del Val, E., Alberola, J., García-Fornes, A.: Enhancing the privacy risk awareness of teenagers in online social networks through soft-paternalism mechanisms. Int. J. Hum Comput Stud. 129, 27–40 (2019) es_ES
dc.description.references Alemany, J., del Val, E., Alberola, J., García-Fornes, A.: Estimation of privacy risk through centrality metrics. Future Generation Computer Systems (2018) es_ES
dc.description.references Alemany, J., Del Val, E., Alberola, J.M., Garćia-Fornes, A.: Metrics for privacy assessment when sharing information in online social networks. IEEE Access 7, 143631143645 (2019) es_ES
dc.description.references Byrt, T., Bishop, J., Carlin, J.B.: Bias, prevalence and kappa. J. Clin. Epidemiol. 46, 423–429 (1993). https://doi.org/10.1016/0895-4356(93)90018-V es_ES
dc.description.references Byrt, T., Bishop, J., Carlin, J.B.: Bias, prevalence and kappa. J. Clin. Epidemiol. 46(5), 423–429 (1993) es_ES
dc.description.references Caliskan Islam, A., Walsh, J., Greenstadt, R.: Privacy detective: Detecting private information and collective privacy behavior in a large social network. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society. ACM (2014) es_ES
dc.description.references Dhir, A., Kaur, P., Chen, S., Lonka, K.: Understanding online regret experience in Facebook use-effects of brand participation, accessibility & problematic use. Comput. Hum. Behav. 59, 420–430 (2016) es_ES
dc.description.references Falotico, R., Quatto, P.: Fleiss’ kappa statistic without paradoxes. Qual. Quant. 49(2), 463–470 (2015) es_ES
dc.description.references Mao, H., Shuai, X., Kapadia, A.: Loose tweets: an analysis of privacy leaks on Twitter. In: Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society, pp. 1–12. ACM (2011) es_ES
dc.description.references Observatorio Español de las Drogas y Adicciones: ESTADÍSTICAS 2018 Alcohol, tabaco y drogas ilegales en España. Ministerio de Sanidad, Servicios Sociales e Igualdad (2018) es_ES
dc.description.references Mothersbaugh, D.L., Foxx, W.K., Beatty, S.E., Wang, S.: Disclosure antecedents in an online service context: the role of sensitivity of information. J. Serv. Res. 15(1), 76–98 (2012) es_ES
dc.description.references Amigas, P.: Privacy and data protection. Accessed 14 Jun 2019 es_ES
dc.description.references Pensa, R.G., Di Blasi, G.: A privacy self-assessment framework for online social networks. Expert Syst. Appl. 86, 18–31 (2017) es_ES
dc.description.references Requena, F., Ayuso, L.: Individualism or complementarity? The effect of digital personal networks on face-to-face personal networks. Inf. Commun. Soc. 22(14), 2097–2111 (2019) es_ES
dc.description.references Rumbold, J.M., Pierscionek, B.K.: What are data? A categorization of the data sensitivity spectrum. Big Data Res. 12, 49–59 (2018) es_ES
dc.description.references Sánchez, D., Viejo, A.: Privacy risk assessment of textual publications in social networks. In: ICAART (1), pp. 236–241 (2015) es_ES
dc.description.references Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002) es_ES
dc.description.references Talukder, N., Ouzzani, M., Elmagarmid, A.K., Elmeleegy, H., Yakout, M.: Privometer: privacy protection in social networks. In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). IEEE (2010) es_ES
dc.description.references Wang, Q., Xue, H., Li, F., Lee, D., Luo, B.: # donttweetthis: scoring private information in social networks. Proc. Priv. Enhancing Technol. 2019(4), 72–92 (2019) es_ES
dc.description.references Wang, Y., Leon, P.G., Acquisti, A., Cranor, L.F., Forget, A., Sadeh, N.: A field trial of privacy nudges for Facebook. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2367–2376. ACM (2014) es_ES
dc.description.references Wang, Y., Leon, P.G., Chen, X., Komanduri, S.: From Facebook regrets to Facebook privacy nudges. Ohio St. LJ 74, 1307 (2013) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem