Mostrar el registro sencillo del ítem
dc.contributor.author | Cirugeda, Eva M. | es_ES |
dc.contributor.author | Calero, Sofía | es_ES |
dc.contributor.author | Hidalgo, Víctor M. | es_ES |
dc.contributor.author | Enero, José | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.date.accessioned | 2022-02-10T08:43:08Z | |
dc.date.available | 2022-02-10T08:43:08Z | |
dc.date.issued | 2020-10-30 | es_ES |
dc.identifier.isbn | 978-1-7281-8803-4 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180702 | |
dc.description.abstract | [EN] In the management of atrial fibrillation (AF), electrical cardioversion (ECV) is a common treatment. Although its initial success rate is high, many patients present AF recurrence after some weeks or months. Hence, being able to identify patients at low chance of mid-term sinus rhythm maintenance is important for a rationale therapeutic strategy. To this end, several parameters assessing fibrillatory (f-) waves have been introduced, however, with limited predictive ability. Moreover, the cardiovascular system exhibits nonlinear dynamics at different time-scales that these indices do not account for. Hence, the present work evaluates the ability of the multiscale entropy (MSE) analysis of the f-waves to improve preoperative forecasts of ECV outcome. Both traditional MSE and a refined version (RMSE) were applied to the main f waves component obtained for standard lead V1. As a reference, previously proposed predictors were also computed. Results revealed that RMSE was able to anticipate AF recurrence after 1 month of ECV with an accuracy around 78%. Moreover, a Naive Bayes model combining previous parameters and RMSE indices reported a discriminant ability 10% higher than single metrics. It could then be concluded that analysis of nonlinear dynamics at large time-scales can enhance ECV outcome predictions. | es_ES |
dc.description.sponsorship | This research was funded by projects: DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501000411 from Junta de Castilla la Mancha and AICO/2019/036 from Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2020 E-Health and Bioengineering Conference (EHB) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Electrical cardioversion | es_ES |
dc.subject | Multiscale entropy | es_ES |
dc.subject | Refined multiscale entropy | es_ES |
dc.subject | Fibrillatory waves | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EHB50910.2020.9280294 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Cirugeda, EM.; Calero, S.; Hidalgo, VM.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280294 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 8th International Conference on e-Health and Bioengineering (EHB 2020) | es_ES |
dc.relation.conferencedate | Octubre 29-30,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EHB50910.2020.9280294 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\433193 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |