- -

Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cirugeda, Eva M. es_ES
dc.contributor.author Calero, Sofía es_ES
dc.contributor.author Hidalgo, Víctor M. es_ES
dc.contributor.author Enero, José es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.date.accessioned 2022-02-10T08:43:08Z
dc.date.available 2022-02-10T08:43:08Z
dc.date.issued 2020-10-30 es_ES
dc.identifier.isbn 978-1-7281-8803-4 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180702
dc.description.abstract [EN] In the management of atrial fibrillation (AF), electrical cardioversion (ECV) is a common treatment. Although its initial success rate is high, many patients present AF recurrence after some weeks or months. Hence, being able to identify patients at low chance of mid-term sinus rhythm maintenance is important for a rationale therapeutic strategy. To this end, several parameters assessing fibrillatory (f-) waves have been introduced, however, with limited predictive ability. Moreover, the cardiovascular system exhibits nonlinear dynamics at different time-scales that these indices do not account for. Hence, the present work evaluates the ability of the multiscale entropy (MSE) analysis of the f-waves to improve preoperative forecasts of ECV outcome. Both traditional MSE and a refined version (RMSE) were applied to the main f waves component obtained for standard lead V1. As a reference, previously proposed predictors were also computed. Results revealed that RMSE was able to anticipate AF recurrence after 1 month of ECV with an accuracy around 78%. Moreover, a Naive Bayes model combining previous parameters and RMSE indices reported a discriminant ability 10% higher than single metrics. It could then be concluded that analysis of nonlinear dynamics at large time-scales can enhance ECV outcome predictions. es_ES
dc.description.sponsorship This research was funded by projects: DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501000411 from Junta de Castilla la Mancha and AICO/2019/036 from Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2020 E-Health and Bioengineering Conference (EHB) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Electrical cardioversion es_ES
dc.subject Multiscale entropy es_ES
dc.subject Refined multiscale entropy es_ES
dc.subject Fibrillatory waves es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB50910.2020.9280294 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Cirugeda, EM.; Calero, S.; Hidalgo, VM.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280294 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 8th International Conference on e-Health and Bioengineering (EHB 2020) es_ES
dc.relation.conferencedate Octubre 29-30,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB50910.2020.9280294 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\433193 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem