- -

IDAT@FIRE2019: Overview of the Track on Irony Detection in Arabic Tweets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

IDAT@FIRE2019: Overview of the Track on Irony Detection in Arabic Tweets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ghanem, Bilal es_ES
dc.contributor.author Karoui, Jihen es_ES
dc.contributor.author Benamara, Farah es_ES
dc.contributor.author Moriceau, Véronique es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2022-02-11T08:06:32Z
dc.date.available 2022-02-11T08:06:32Z
dc.date.issued 2019-12-15 es_ES
dc.identifier.issn 1613-0073 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180744
dc.description.abstract [EN] This overview paper describes the first shared task on irony detection for the Arabic language. The task consists of a binary classification of tweets as ironic or not using a dataset composed of 5,030 Arabic tweets about different political issues and events related to the Middle East and the Maghreb. Tweets in our dataset are written in Modern Standard Arabic but also in different Arabic language varieties including Egypt, Gulf, Levantine and Maghrebi dialects. Eighteen teams registered to the task among which ten submitted their runs. The methods of participants ranged from feature-based to neural networks using either classical machine learning techniques or ensemble methods. The best performing system achieved F-score value of 0.844, showing that classical feature-based models outperform the neural ones. es_ES
dc.description.sponsorship This publication was made possible by NPRP grant 9-175-1-033 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the last author. The work of Paolo Rosso was also partially funded by Generalitat Valenciana under grant PROMETEO/2019/121. es_ES
dc.language Inglés es_ES
dc.publisher CEUR-WS.org es_ES
dc.relation.ispartof Working Notes of FIRE 2019 . CEUR-WS.org, vol. 2517 es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Irony detection es_ES
dc.subject Arabic language es_ES
dc.subject Social media es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title IDAT@FIRE2019: Overview of the Track on Irony Detection in Arabic Tweets es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/QNRF//NPRP 9-175-1-033//Arabic Author Profiling for Cyber-Security/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121//Deep learning for adaptative and multimodal interaction in pattern recognition/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Ghanem, B.; Karoui, J.; Benamara, F.; Moriceau, V.; Rosso, P. (2019). IDAT@FIRE2019: Overview of the Track on Irony Detection in Arabic Tweets. CEUR-WS.org. 380-390. http://hdl.handle.net/10251/180744 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 11th meeting of Forum for Information Retrieval Evaluation (FIRE 2019) es_ES
dc.relation.conferencedate Diciembre 12-15,2019 es_ES
dc.relation.conferenceplace Kolkata, India es_ES
dc.relation.publisherversion http://ceur-ws.org/Vol-2517/ es_ES
dc.description.upvformatpinicio 380 es_ES
dc.description.upvformatpfin 390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\401857 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Qatar National Research Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem