Resumen:
|
[ES] En el presente trabajo se pretende analizar y diseñar, mediante la ayuda del método de los elementos finitos, una tabla de snowboard alpina, que se caracteriza por su mayor rigidez a flexión y torsión. En primer lugar ...[+]
[ES] En el presente trabajo se pretende analizar y diseñar, mediante la ayuda del método de los elementos finitos, una tabla de snowboard alpina, que se caracteriza por su mayor rigidez a flexión y torsión. En primer lugar se hará un estudio pormenorizado de las características que tiene que cumplir una tabla de este tipo para para ponerlas en relación a los parámetros de diseño más importantes, como son la naturaleza, tipo y orientación del tipo de tejidos utilizados, la naturaleza del núcleo y las dimensiones de la estructura sandwhich formada. Además se estudiará una variante reforzada con fibras naturales para evaluar su comportamiento y compararla a las soluciones tradicionales. Mediante la ayuda del método de los elementos finitos (MEF) se hará un modelado del diseño para posteriormente optimizarlo, en base a los requisitos de resistencia a la flexión y a la torsión requeridos además de la absorción de vibraciones (característica por la cual destacan las fibras naturales). Los cálculos se validaran con la fabricación de probetas en las distintas configuraciones sobre las que se realizarán las medidas resistenciales requeridas.
[-]
[EN] As reverse engineering of a current full carve snowboard, this study aims to analyze a current board in order to develop it thanks to a finite element method. This research was largely performed by using Abaqus software ...[+]
[EN] As reverse engineering of a current full carve snowboard, this study aims to analyze a current board in order to develop it thanks to a finite element method. This research was largely performed by using Abaqus software to simulate bending, twisting and dynamic analysis as well. The central parameters that were studied were stiffness through Young, shear¿s modulus and damping of the board. To do so, several aspects of the skin¿s configuration have been aborded. First of all, a state of the art of the snowboard¿s field was done before analyzing and modelling the current snowboard on Abaqus. Then, after representing its composite structure, a comparison between its biaxial E-glass structure and a triaxial one was done to select the second one which is more efficient especially regarding twisting. Afterwards, a selection of the fiber that should ensure the mechanical properties were done to select a S-glass fiber structure instead of E-glass or flax one. Then, to develop stiffness and reduce the impact of vibrations on the board, hybrid composites samples were imagined. These samples were made of a triaxial S-glass structure to carry out the mechanical properties and flax fibers with the aim to lower the vibrations in the board. 6 hybrid samples were done with uniaxial or biaxial flax fiber setup, directly stacked to the wood-core, between the 0°-fiberglass sheet and 45°-oriented one and at the extremities of the sandwich structure. Finally, the doble structures shown interesting mechanical characteristics with an increasement of the Young¿s Modulus and shear¿s modulus in comparison with the classical setups. Another interesting point was that the hybrid structure seems to be less subject to vibrations than classical setup by generating less energy than the others.
[-]
|