- -

Exposing the ideal combination of endogenous¿exogenous drivers for companies' ecoinnovative orientation: Results from machine-learning methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Exposing the ideal combination of endogenous¿exogenous drivers for companies' ecoinnovative orientation: Results from machine-learning methods

Show full item record

Peiró Signes, A.; Segarra-Oña, M.; Trull-Dominguez, O.; Sánchez-Planelles, J. (2022). Exposing the ideal combination of endogenous¿exogenous drivers for companies' ecoinnovative orientation: Results from machine-learning methods. Socio-Economic Planning Sciences. 79:1-15. https://doi.org/10.1016/j.seps.2021.101145

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180858

Files in this item

Item Metadata

Title: Exposing the ideal combination of endogenous¿exogenous drivers for companies' ecoinnovative orientation: Results from machine-learning methods
Author: Peiró Signes, Angel Segarra-Oña, Marival Trull-Dominguez, Oscar Sánchez-Planelles, Joaquín
UPV Unit: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] This study provides an XGBoost model to characterize the environmental orientation of innovative firms. This novel approach, using state-of-the-art machine learning methodologies and multiple recognized drivers of ...[+]
Subjects: Eco-innovation , Drivers , Innovative firms , Machine learning
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Socio-Economic Planning Sciences. (issn: 0038-0121 )
DOI: 10.1016/j.seps.2021.101145
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.seps.2021.101145
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record