- -

New applications of late fusion methods for EEG signal processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New applications of late fusion methods for EEG signal processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Safont, Gonzalo es_ES
dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.date.accessioned 2022-02-17T07:21:00Z
dc.date.available 2022-02-17T07:21:00Z
dc.date.issued 2019-12-07 es_ES
dc.identifier.isbn 978-1-7281-5584-5 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180932
dc.description.abstract [EN] Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new applications of automatic stage classification of several neuropsychological tests. The tests were staged into three classes: stimulus display, retention interval, and subject response. The considered late fusion methods were: alpha integration; copulas; Dempster-Shafer combination; independent component analysis mixture models; and behavior knowledge space. Late fusion was able to improve the performance for the task, with alpha integration yielding the most stable result. es_ES
dc.description.sponsorship This work was supported by Generalitat Valenciana under grant PROMETEO/2019/109 and Spanish Administration and European Union grant TEC2017-84743-P. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2019 International Conference on Computational Science and Computational Intelligence (CSCI) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alpha integration es_ES
dc.subject Classification es_ES
dc.subject Late fusion es_ES
dc.subject EEG es_ES
dc.subject Neuropsychological tests es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title New applications of late fusion methods for EEG signal processing es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/CSCI49370.2019.00116 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Safont, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2019). New applications of late fusion methods for EEG signal processing. IEEE. 617-621. https://doi.org/10.1109/CSCI49370.2019.00116 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 6th Annual Conference on Computational Science & Computational Intelligence (CSCI'19) es_ES
dc.relation.conferencedate Diciembre 05-07,2019 es_ES
dc.relation.conferenceplace Las Vegas, USA es_ES
dc.relation.publisherversion https://doi.org/10.1109/CSCI49370.2019.00116 es_ES
dc.description.upvformatpinicio 617 es_ES
dc.description.upvformatpfin 621 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\408032 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem