Mostrar el registro sencillo del ítem
dc.contributor.author | Safont, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.date.accessioned | 2022-02-17T07:21:00Z | |
dc.date.available | 2022-02-17T07:21:00Z | |
dc.date.issued | 2019-12-07 | es_ES |
dc.identifier.isbn | 978-1-7281-5584-5 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180932 | |
dc.description.abstract | [EN] Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new applications of automatic stage classification of several neuropsychological tests. The tests were staged into three classes: stimulus display, retention interval, and subject response. The considered late fusion methods were: alpha integration; copulas; Dempster-Shafer combination; independent component analysis mixture models; and behavior knowledge space. Late fusion was able to improve the performance for the task, with alpha integration yielding the most stable result. | es_ES |
dc.description.sponsorship | This work was supported by Generalitat Valenciana under grant PROMETEO/2019/109 and Spanish Administration and European Union grant TEC2017-84743-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2019 International Conference on Computational Science and Computational Intelligence (CSCI) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alpha integration | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Late fusion | es_ES |
dc.subject | EEG | es_ES |
dc.subject | Neuropsychological tests | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | New applications of late fusion methods for EEG signal processing | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/CSCI49370.2019.00116 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Safont, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2019). New applications of late fusion methods for EEG signal processing. IEEE. 617-621. https://doi.org/10.1109/CSCI49370.2019.00116 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th Annual Conference on Computational Science & Computational Intelligence (CSCI'19) | es_ES |
dc.relation.conferencedate | Diciembre 05-07,2019 | es_ES |
dc.relation.conferenceplace | Las Vegas, USA | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/CSCI49370.2019.00116 | es_ES |
dc.description.upvformatpinicio | 617 | es_ES |
dc.description.upvformatpfin | 621 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\408032 | es_ES |