- -

A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peris, Álvaro es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.date.accessioned 2022-02-17T07:21:01Z
dc.date.available 2022-02-17T07:21:01Z
dc.date.issued 2019-08-02 es_ES
dc.identifier.isbn 978-1-950737-50-5 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180933
dc.description.abstract [EN] We present a demonstration of a neural interactive-predictive system for tackling mul- timodal sequence to sequence tasks. The system generates text predictions to different sequence to sequence tasks: machine translation, image and video captioning. These predictions are revised by a human agent, who introduces corrections in the form of characters. The system reacts to each correction, providing alternative hypotheses, compelling with the feed-back provided by the user. The final objective is to reduce the human effort required during this correction process. This system is implemented following a client server architecture. For accessing the system, we developed a website, which communicates with the neural model, hosted in a local server. From this website, the different tasks can be tackled following the interactive-predictive framework. We opensource all the code developed for building this system. es_ES
dc.description.sponsorship We acknowledge the anonymous reviewers for their helpful suggestions. The research leading to these results has received funding from the Generalitat Valenciana under grant PROMETEOII/2014/030 and from TIN2015-70924-C2-1- R. We also acknowledge NVIDIA Corporation for the donation of GPUs used in this work. es_ES
dc.language Inglés es_ES
dc.publisher Association for Computational Linguistics es_ES
dc.relation.ispartof Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Interactive-predictive systems es_ES
dc.subject Sequence-to-sequence: machine translation es_ES
dc.subject Image description es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-70924-C2-1-R/ES/CONTEXTO, MULTIMODALIDAD Y COLABORACION DEL USUARIO EN PROCESADO DE TEXTO MANUSCRITO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEOII%2F2014%2F030//Adaptive learning and multimodality in machine translation and text transcription/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Peris, Á.; Casacuberta Nolla, F. (2019). A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks. Association for Computational Linguistics. 81-86. http://hdl.handle.net/10251/180933 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019) es_ES
dc.relation.conferencedate Julio 28-Agosto 02,2019 es_ES
dc.relation.conferenceplace Florence, Italy es_ES
dc.relation.publisherversion https://aclanthology.org/ es_ES
dc.description.upvformatpinicio 81 es_ES
dc.description.upvformatpfin 86 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\403717 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem