Mostrar el registro sencillo del ítem
dc.contributor.author | Peris, Álvaro | es_ES |
dc.contributor.author | Casacuberta Nolla, Francisco | es_ES |
dc.date.accessioned | 2022-02-17T07:21:01Z | |
dc.date.available | 2022-02-17T07:21:01Z | |
dc.date.issued | 2019-08-02 | es_ES |
dc.identifier.isbn | 978-1-950737-50-5 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180933 | |
dc.description.abstract | [EN] We present a demonstration of a neural interactive-predictive system for tackling mul- timodal sequence to sequence tasks. The system generates text predictions to different sequence to sequence tasks: machine translation, image and video captioning. These predictions are revised by a human agent, who introduces corrections in the form of characters. The system reacts to each correction, providing alternative hypotheses, compelling with the feed-back provided by the user. The final objective is to reduce the human effort required during this correction process. This system is implemented following a client server architecture. For accessing the system, we developed a website, which communicates with the neural model, hosted in a local server. From this website, the different tasks can be tackled following the interactive-predictive framework. We opensource all the code developed for building this system. | es_ES |
dc.description.sponsorship | We acknowledge the anonymous reviewers for their helpful suggestions. The research leading to these results has received funding from the Generalitat Valenciana under grant PROMETEOII/2014/030 and from TIN2015-70924-C2-1- R. We also acknowledge NVIDIA Corporation for the donation of GPUs used in this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Association for Computational Linguistics | es_ES |
dc.relation.ispartof | Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Interactive-predictive systems | es_ES |
dc.subject | Sequence-to-sequence: machine translation | es_ES |
dc.subject | Image description | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-70924-C2-1-R/ES/CONTEXTO, MULTIMODALIDAD Y COLABORACION DEL USUARIO EN PROCESADO DE TEXTO MANUSCRITO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEOII%2F2014%2F030//Adaptive learning and multimodality in machine translation and text transcription/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Peris, Á.; Casacuberta Nolla, F. (2019). A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks. Association for Computational Linguistics. 81-86. http://hdl.handle.net/10251/180933 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019) | es_ES |
dc.relation.conferencedate | Julio 28-Agosto 02,2019 | es_ES |
dc.relation.conferenceplace | Florence, Italy | es_ES |
dc.relation.publisherversion | https://aclanthology.org/ | es_ES |
dc.description.upvformatpinicio | 81 | es_ES |
dc.description.upvformatpfin | 86 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\403717 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMIA Y EMPRESA | es_ES |