- -

P systems in the time of COVID-19

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

P systems in the time of COVID-19

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baquero, Fernando es_ES
dc.contributor.author Campos Frances, Marcelino es_ES
dc.contributor.author Llorens, Carlos es_ES
dc.contributor.author Sempere Luna, José María es_ES
dc.date.accessioned 2022-02-28T19:03:13Z
dc.date.available 2022-02-28T19:03:13Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 2523-8906 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181143
dc.description.abstract [EN] In this paper, we present LOIMOS, which is an epidemiological scenario simulator developed in the context of the fight against the pandemic caused by coronavirus SARS-CoV-2 on a global scale. LOIMOS has been fully developed under the paradigm of membrane computing using transition P systems with communication rules, active membranes and a stochastic simulator engine. In this paper we detail the main components of the system and we report some examples of epidemiological scenarios evaluated with LOIMOS. es_ES
dc.description.sponsorship This work has been developed with the financial support of the Ministerio de Ciencia e Innovacion and Instituto de Salud Carlos III, Grant COV20_00067, and the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 952215 corresponding to the TAILOR project. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Journal of Membrane Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject P systems es_ES
dc.subject Active membranes es_ES
dc.subject Communication rules es_ES
dc.subject Stochastic simulation es_ES
dc.subject Epidemiological simulators es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title P systems in the time of COVID-19 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s41965-021-00083-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/952215/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//COV20_00067/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Baquero, F.; Campos Frances, M.; Llorens, C.; Sempere Luna, JM. (2021). P systems in the time of COVID-19. Journal of Membrane Computing. 3(4):246-257. https://doi.org/10.1007/s41965-021-00083-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s41965-021-00083-1 es_ES
dc.description.upvformatpinicio 246 es_ES
dc.description.upvformatpfin 257 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\452734 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Baquero, F., Campos, M., Llorens, C. & Sempere J. M. (2018). A model of antibiotic resistance evolution dynamics through P systems with active membranes and communication rule. In Enjoying Natural Computing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday, pp. 33–44. Springer. es_ES
dc.description.references Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B., & Sledge, D. (2020). The challenges of modeling and forecasting the spread of COVID-19. Proceedings of the National Academy of Sciences, 117(29), 16732–16738. https://doi.org/10.1073/pnas.2006520117 es_ES
dc.description.references Bullard, J., Dust, K., Funk, D., et al. (2020). Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clinical Infectious Diseases, 71(10), 2663–2666. https://doi.org/10.1093/cid/ciaa638 es_ES
dc.description.references Campos, M., Capilla, R., Naya, F., Futami, R., Coque, T., Moya, A., Fernandez-Lanza, V., Cantón, R., Sempere, J. M., Llorens, C., & Baquero, F. (2019). Simulating multilevel dynamics of antimicrobial resistance in a membrane computing model. mBio, 10(1), e02460–e024618. https://doi.org/10.1128/mBio.02460-18 es_ES
dc.description.references Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodríguez, I., Carrasco, P., Capilla, R., Latorre, A., Coque, T., Moya, A., & Baquero, F. (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct, 10(41), 1–13. https://doi.org/10.1186/s13062-015-0070-9 es_ES
dc.description.references Campos, M., San Millán, A., Sempere, J. M., Lanza, V. F., Coque, T., Llorens, C., & Baquero, F. (2020). Simulating the influence of conjugative-plasmid kinetic values on the multilevel dynamics of antimicrobial resistance in a membrane computing model. Antimicrobial Agents and Chemotherapy, 64(8), e00593–e005920. https://doi.org/10.1128/AAC.00593-20 es_ES
dc.description.references Campos, M., Sempere, J. M., Galán, J. C., et al. (2021). Simulating the impact of non-pharmaceutical interventions limiting transmission in COVID-19 epidemics using a membrane computing model. microLife, 2, uqab011. https://doi.org/10.1093/femsml/uqab011 es_ES
dc.description.references Dogra, P., Ruiz-Ramírez, J., Sinha, K., et al. (2021). Innate immunity plays a key role in controlling viral load in Covid-19: mechanistic insights from a whole-body infection dynamics model. ACS Pharmacology and Translational Science, 4(1), 248–265. https://doi.org/10.1021/acsptsci.0c00183 es_ES
dc.description.references Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032 es_ES
dc.description.references Huang, A. T., Garcia-Carreras, B., Hitchings, M. D. T., et al. (2020). A systematic review of antibody mediated immunity to coronaviruses: Kinetics, correlates of protection, and association with severity. Nature Communications, 11(1), 4704. https://doi.org/10.1038/s41467-020-18450-4 es_ES
dc.description.references Instituto Nacional de Estadística de España. (2020). Statistical information for the analysis of the impact of the COVID-19 crisis. https://www.ine.es/en/covid/covid_inicio_en.htm es_ES
dc.description.references van Kampen, J. J. A., van de Vijver, D. A. M. C., Fraaij, P. L. A., et al. (2021). Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nature Communications, 12, 267. https://doi.org/10.1038/s41467-020-20568-4 es_ES
dc.description.references Kim, Y., Kim, S., Park, S., et al. (2021). Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerging Microbes and Infections, 10(1), 152–160. https://doi.org/10.1080/22221751.2021.1872352 es_ES
dc.description.references Kermack, W. O., & McKendrick, G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A, 115, 700–721. https://doi.org/10.1098/rspa.1927.0118 es_ES
dc.description.references La Scola, B., Le Bideau, M., Andreani, J., Hoang, V. T., Grimaldier, C., Colson, P., Gautret, P., & Raoult, D. (2020). Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. European Journal of Clinical Microbiology and Infectious Diseases, 39(6), 1059–1061. https://doi.org/10.1007/s10096-020-03913-9 es_ES
dc.description.references Lee, S., Kim, T., Lee, E., Lee, C., et al. (2020). Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a Community Treatment Center in the Republic of Korea. JAMA Internal Medicine, 180(11), 1447–1452. https://doi.org/10.1001/jamainternmed.2020.3862 es_ES
dc.description.references Martínez del Amor, M. A., Pérez-Hurtado, I., García-Quismondo, M., Macías-Ramos, L. F., Valencia-Cabrera, L., Romero-Jiménez, A., et al. (2013). DCBA: Simulating population dynamics P systems with proportional object distribution. In E. Csuhaj-Varju, M. Gheorghe, G. Rozenberg, A. Salomaa, & G. Vaszil (Eds.), Membrane computing, LNCS (Vol. 7762, pp. 257–276). Springer. es_ES
dc.description.references Newman, M. E. J. (2010). Networks. An introduction. Oxford University Press. es_ES
dc.description.references Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. es_ES
dc.description.references Păun, G. (2002). Membrane computing. An introduction. Springer. es_ES
dc.description.references Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford handbook of membrane computing. Oxford University Press. es_ES
dc.description.references Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A model of the quorum sensing system in Vibrio fischeri using P systems. Artificial Life, 14, 95–109. https://doi.org/10.1162/artl.2008.14.1.95 es_ES
dc.description.references Singanayagam, A., Patel, M., Charlett, A., Lopez Bernal, J., Saliba, V., Ellis, J., Ladhani, S., Zambon, M., & Gopal, R. (2020). Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance. https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483 es_ES
dc.description.references Wong, G. N., Weiner, Z. J., Tkachenko, A. V., et al. (2020). Modeling COVID-19 dynamics in Illinois under nonpharmaceutical interventions. Physical Review X, 10(4), 041033. https://doi.org/10.1103/PhysRevX.10.041033 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem