Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández, M. V. | es_ES |
dc.contributor.author | Lattanzi, M. B. | es_ES |
dc.contributor.author | Thome, Néstor | es_ES |
dc.date.accessioned | 2022-02-28T19:03:17Z | |
dc.date.available | 2022-02-28T19:03:17Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181146 | |
dc.description.abstract | [EN] This paper deals with new generalized inverses of rectangular complex matrices, namely 1MP and MP1-inverses. They are constructed from oblique projectors represented by means of inner generalized inverses, by using an adequate equivalence relation, and then passing to the quotient set. We give characterizations and general expressions for 1MP and MP1-inverses. As applications, the binary relations induced for these new generalized inverses are proved to be partial orders. | es_ES |
dc.description.sponsorship | M. V. Hernández and M. B. Lattanzi: Partially supported by Universidad Nacional de La Pampa, Facultad de Ingeniería (Grant Resol. Nro. 135/19). N. Thome: Partially supported by Universidad Nacional de La Pampa, Facultad de Ingeniería (Grant Resol. Nro. 135/19), by Ministerio de Economía y Competitividad of Spain (grant Red de Excelencia MTM2017-90682-REDT), by Universidad Nacional del Sur of Argentina (Grant PGI 24/L108), and by Universidad Nacional de Río Cuarto (Grant Res. Nro. 083/2020). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Generalized inverses | es_ES |
dc.subject | Moore-Penrose inverse | es_ES |
dc.subject | Matrix equations | es_ES |
dc.subject | Partial order | es_ES |
dc.subject | Equivalence classes | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | From projectors to 1MP and MP1 generalized inverses and their induced partial orders | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-021-01090-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad Nacional del Sur - Argentina//24%2FL108//VARIEDADES Y CUASIVARIEDADES EN ÁLGEBRA DE LA LÓGICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad Nacional de La Pampa//Resol. N.° 135%2F19 del CD de la Fac. de Ing.//Matrices Inversas Generalizadas y Órdenes Parciales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad Nacional de Río Cuarto//Res. 083%2F2020//Aproximación de Funciones e Inversas Generalizadas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT//RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hernández, MV.; Lattanzi, MB.; Thome, N. (2021). From projectors to 1MP and MP1 generalized inverses and their induced partial orders. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-13. https://doi.org/10.1007/s13398-021-01090-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-021-01090-8 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\439911 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universidad Nacional de La Pampa | es_ES |
dc.contributor.funder | Universidad Nacional de Río Cuarto | es_ES |
dc.contributor.funder | Universidad Nacional del Sur - Argentina | es_ES |
dc.description.references | Baksalary, O.M., Styan, G.P.H., Trenkler, G.: On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra Appl. 430, 2798–2812 (2009) | es_ES |
dc.description.references | Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010) | es_ES |
dc.description.references | Ben-Israel, A., Greville, T.N.E.: Generalized inverses: theory and applications, 2nd edn. Springer-Verlag, New York (2003) | es_ES |
dc.description.references | Campbell, S.L., Meyer, C.D.: Generalized inverses of linear transformation. SIAM, Philadelphia (2009) | es_ES |
dc.description.references | Campbell, S.L., Meyer, C.D.: Weak Drazin inverses. Linear Algebra Appl. 20, 167–178 (1978) | es_ES |
dc.description.references | Chen, J.L., Zhu, H.H., Patrício, P., Zhang, Y.L.: Characterizations and representations of core and dual core inverses. Can. Math. Bull. 60(2), 269–282 (2017) | es_ES |
dc.description.references | Coll, C., Lattanzi, M., Thome, N.: Weighted G-Drazin inverses and a new pre-order on rectangular matrices. Appl. Math. Comput. 317, 12–24 (2018) | es_ES |
dc.description.references | Cvetković-Ilić, D.S., Mosić, D., Wei, Y.: Partial orders on $$B(H)$$. Linear Algebra Appl. 481, 115–130 (2015) | es_ES |
dc.description.references | Djikić, M.S.: Lattice properties of the core-partial order. Banach J. Math. Anal. 11(2), 398–415 (2017) | es_ES |
dc.description.references | Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018) | es_ES |
dc.description.references | Ferreyra, D.E., Levis, F.E., Thome, N.: Characterizations of k-commutative equalities for some outer generalized inverses. Linear Multilinear Algebra 68(1), 177–192 (2020) | es_ES |
dc.description.references | Ferreyra, D.E., Lattanzi, M., Levis, F.E., Thome, N.: Parametrized solutions $$X$$ of the system $$AXA=AEA$$ and $$A^kEAX= XAEA^k$$ for a matrix $$A$$ having index $$k$$. Electron. J. Linear Algebra 35, 503–510 (2019) | es_ES |
dc.description.references | Hartwig, R.E., Spindleböck, K.: Matrices for which $$A^*$$ and $$A^{\dagger }$$ commute. Linear Multilinear Algebra 14, 241–256 (1984) | es_ES |
dc.description.references | Kyrchei, I.: Determinantal representations of the $$W$$-weighted Drazin inverse over the quaternion skew field. Appl. Math. Comput. 264, 453–465 (2015) | es_ES |
dc.description.references | Liu, X., Cai, N.: High-order iterative methods for the DMP inverse. J. Math. (2018). https://doi.org/10.1155/2018/8175935. (Article ID 8175935) | es_ES |
dc.description.references | Malik, S.B., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226, 575–580 (2014) | es_ES |
dc.description.references | Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66(5), 1046–1053 (2018) | es_ES |
dc.description.references | Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62(6), 792–802 (2014) | es_ES |
dc.description.references | Mitra, S.K., Bhimasankaram, P., Malik, S.: Matrix partial orders, shorted operators and applications. World Scientific Publishing Company, New Jersey (2010) | es_ES |
dc.description.references | Mosić, D., Kolundzija, M.Z.: Weighted CMP inverse of an operator between Hilbert spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 113, 2155–2173 (2019) | es_ES |
dc.description.references | Rakić, D.S., Dinčić, N.C., Djordjević, D.S.: Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014) | es_ES |
dc.description.references | Rao, C.R., Mitra, S.K.: Generalized inverse of matrices and its applications. John Wiley & Sons Inc., New York (1971) | es_ES |
dc.description.references | Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8(4), 982–998 (2015) | es_ES |
dc.description.references | Wang, H., Liu, X.: Characterizations of the core inverse and the partial ordering. Linear Multilinear Algebra 63(9), 1829–1836 (2015) | es_ES |
dc.description.references | Wang, X., Liu, X.: Partial orders based on core-nilpotent decomposition. Linear Algebra Appl. 488, 235–248 (2016) | es_ES |
dc.description.references | Zhu, H.H., Patrício, P.: Several types of one-sided partial orders in rings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. (2019). https://doi.org/10.1007/s13398-019-00685-6 | es_ES |
dc.description.references | Zhu, H.: On DMP inverses and $$m$$-EP elements in rings. Linear Multilinear Algebra 67(4), 1–11 (2018) | es_ES |
dc.description.references | Zhou, M., Chen, J., Stanimirovic, P.S., Katsikis, V.N., Ma, H.: Complex varying-parameter Zhang neural networks for computing core and core-EP inverse. Neural Process. Lett. 51(2), 1299–1329 (2020) | es_ES |
dc.description.references | Zuo, K., Cvetković-Ilić, D., Cheng, Y.: Different characterizations of DMP-inverse of matrices. To appear in Linear and Multilinear Algebra | es_ES |