- -

IoT-Networks group-based model that uses AI for workgroup allocation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

IoT-Networks group-based model that uses AI for workgroup allocation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Ramírez, Pedro Luis es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Tomás Gironés, Jesús es_ES
dc.contributor.author Hurtado, Mikel es_ES
dc.date.accessioned 2022-03-02T19:02:26Z
dc.date.available 2022-03-02T19:02:26Z
dc.date.issued 2021-02-26 es_ES
dc.identifier.issn 1389-1286 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181218
dc.description.abstract [EN] This paper presents a centralized management architecture model for designing workgroup-based Internet of Things (IoT) and Internet of Everything (IoE) networks. The architecture establishes the organization of an object according to its functions and capacities in layers. From its model, it is derived the design of the algorithms that give the network operation. These algorithms include the multi-protocol communication and interconnectivity algorithm, the routing algorithm, the resource sharing algorithm, and the grouping algorithm, all controlled by Artificial Intelligence (AI). The grouping algorithm consists of creating collaborative workgroups based on Machine Learning (ML) techniques that use the objects' features to allocating these within a workgroup that attends a type of service and within an architecture layer according to its capabilities. The model was tested with a simulation that shows the Machine-to-Machine (M2M) interaction between the devices involved in providing a service to a user within a Smart Home. This simulation uses an AI hosted within an IoT-Gateway to collect data on the features that define a connected object's functions and services. The extraction of the features is done using the Discovery of Functions and Services Protocol (DFSP) transported through an IoT-Protocol. With this information, the AI assigns a layer and a workgroup to a new object when it enters the network. The result of these tests can be used to know which ML technique has better accuracy. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economía y Competitividad in the Programa Estatal de Fomento de la Investigacion Científica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR. At the Univeridad Central (Colombia), to the Smart City work team of the MAXWELL research group, for their special interest in generating new contributions to the networks (IoT & IoE). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Networks es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject IoT es_ES
dc.subject IoT-smart architecture es_ES
dc.subject IoT-gateway es_ES
dc.subject M2M protocols es_ES
dc.subject ML classifiers es_ES
dc.subject Collaborative workgroups es_ES
dc.subject Network model es_ES
dc.subject Graph theory es_ES
dc.subject Smart IoT-networks es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title IoT-Networks group-based model that uses AI for workgroup allocation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.comnet.2020.107745 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation González Ramírez, PL.; Lloret, J.; Tomás Gironés, J.; Hurtado, M. (2021). IoT-Networks group-based model that uses AI for workgroup allocation. Computer Networks. 186:1-14. https://doi.org/10.1016/j.comnet.2020.107745 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.comnet.2020.107745 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 186 es_ES
dc.relation.pasarela S\441238 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem