Mostrar el registro sencillo del ítem
dc.contributor.author | Cervigón, Carlos | es_ES |
dc.contributor.author | Velasco, J. Manuel | es_ES |
dc.contributor.author | Burgos-Simon, Clara | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.contributor.author | Hidalgo, J. Ignacio | es_ES |
dc.date.accessioned | 2022-03-09T08:04:14Z | |
dc.date.available | 2022-03-09T08:04:14Z | |
dc.date.issued | 2021-07-01 | es_ES |
dc.identifier.isbn | 978-1-7281-8393-0 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181331 | |
dc.description.abstract | [EN] Type 1 Diabetes patients have to control their blood glucose levels using insulin therapy. Numerous factors (such as carbohydrate intake, physical activity, time of day, etc.) greatly complicate this task. In this article we propose a modeling method that will allow us to make predictions of blood glucose level evolution with a time horizon of 24 hours. This may allow the adjustment of insulin doses in advance and could help to improve the living conditions of diabetes patients. Our approach starts from a system of finite difference equations that characterizes the interaction between insulin and glucose (in the field, this is known as a minimal model). This model has several parameters whose values vary widely depending on patient characteristics and time. Thus, in the first phase of our strategy, We will enrich the patient¿s historical data by adding white Gaussian noise, which will allow us to perform a probabilistic fitting with a 95% confidence interval. Then, the model¿s parameters are adjusted based on the history of each patient using a genetic algorithm and dividing the day into 12 time intervals. In the final stage, we will perform a whole-day forecast from an ensemble of the models fitted in the previous phase. Th e validity of our strategy will be tested using the Parkers¿ error grid analysis. Our experimental results based on data from real diabetic patients show that this technique is capable of robust predictions that take into account all the uncertainty associated with the interaction between insulin and glucose. | es_ES |
dc.description.sponsorship | We acknowledge support from Spanish Ministry of Economy and Competitiveness under project RTI2018-095180- B-I00 and Madrid Regional Goverment - FEDER grants B2017/BMD3773 (GenObIA-CM) and Y2018/NMT-4668 (Micro-Stress- MAP-CM). Devices for adquiring data from patients were adquired with the support of Fundacion Eugenio Rodriguez Pascual 2019 grant - Desarrollo de sistemas adaptativos y bioinspirados para el control glucemico con infusores subcutaneos continuos de insulina y monitores continuos de glucosa (Development of adaptive and bioinspired systems for glycaemic control with continuous subcutaneous insulin infusors and continuous glucose monitors). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2021, Krakow, Poland, June 28 - July 1, 2021 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diabetes | es_ES |
dc.subject | Glucose prediction | es_ES |
dc.subject | Genetic algorithms | es_ES |
dc.subject | Evolutionary computation | es_ES |
dc.title | Probabilistic Fitting of Glucose Models with Real-Coded Genetic Algorithms | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/CEC45853.2021.9504836 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095180-B-I00/ES/SISTEMA ADAPTATIVO BIOINSPIRADO PARA EL CONTROL GLUCEMICO BASADO EN SENSORES Y ACCESORIOS INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//Y2018%2FNMT-4668//Micro-Stres-MAP-CM / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3773//GenObIA-CM/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Cervigón, C.; Velasco, JM.; Burgos-Simon, C.; Villanueva Micó, RJ.; Hidalgo, JI. (2021). Probabilistic Fitting of Glucose Models with Real-Coded Genetic Algorithms. IEEE. 736-743. https://doi.org/10.1109/CEC45853.2021.9504836 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | IEEE Congress on Evolutionary Computation (CEC 2021) | es_ES |
dc.relation.conferencedate | Junio 28-Julio 01,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/CEC45853.2021.9504836 | es_ES |
dc.description.upvformatpinicio | 736 | es_ES |
dc.description.upvformatpfin | 743 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\452190 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundación Eugenio Rodriguez Pascual | es_ES |