- -

Probabilistic Fitting of Glucose Models with Real-Coded Genetic Algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic Fitting of Glucose Models with Real-Coded Genetic Algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cervigón, Carlos es_ES
dc.contributor.author Velasco, J. Manuel es_ES
dc.contributor.author Burgos-Simon, Clara es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.contributor.author Hidalgo, J. Ignacio es_ES
dc.date.accessioned 2022-03-09T08:04:14Z
dc.date.available 2022-03-09T08:04:14Z
dc.date.issued 2021-07-01 es_ES
dc.identifier.isbn 978-1-7281-8393-0 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181331
dc.description.abstract [EN] Type 1 Diabetes patients have to control their blood glucose levels using insulin therapy. Numerous factors (such as carbohydrate intake, physical activity, time of day, etc.) greatly complicate this task. In this article we propose a modeling method that will allow us to make predictions of blood glucose level evolution with a time horizon of 24 hours. This may allow the adjustment of insulin doses in advance and could help to improve the living conditions of diabetes patients. Our approach starts from a system of finite difference equations that characterizes the interaction between insulin and glucose (in the field, this is known as a minimal model). This model has several parameters whose values vary widely depending on patient characteristics and time. Thus, in the first phase of our strategy, We will enrich the patient¿s historical data by adding white Gaussian noise, which will allow us to perform a probabilistic fitting with a 95% confidence interval. Then, the model¿s parameters are adjusted based on the history of each patient using a genetic algorithm and dividing the day into 12 time intervals. In the final stage, we will perform a whole-day forecast from an ensemble of the models fitted in the previous phase. Th e validity of our strategy will be tested using the Parkers¿ error grid analysis. Our experimental results based on data from real diabetic patients show that this technique is capable of robust predictions that take into account all the uncertainty associated with the interaction between insulin and glucose. es_ES
dc.description.sponsorship We acknowledge support from Spanish Ministry of Economy and Competitiveness under project RTI2018-095180- B-I00 and Madrid Regional Goverment - FEDER grants B2017/BMD3773 (GenObIA-CM) and Y2018/NMT-4668 (Micro-Stress- MAP-CM). Devices for adquiring data from patients were adquired with the support of Fundacion Eugenio Rodriguez Pascual 2019 grant - Desarrollo de sistemas adaptativos y bioinspirados para el control glucemico con infusores subcutaneos continuos de insulina y monitores continuos de glucosa (Development of adaptive and bioinspired systems for glycaemic control with continuous subcutaneous insulin infusors and continuous glucose monitors). es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2021, Krakow, Poland, June 28 - July 1, 2021 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diabetes es_ES
dc.subject Glucose prediction es_ES
dc.subject Genetic algorithms es_ES
dc.subject Evolutionary computation es_ES
dc.title Probabilistic Fitting of Glucose Models with Real-Coded Genetic Algorithms es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/CEC45853.2021.9504836 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095180-B-I00/ES/SISTEMA ADAPTATIVO BIOINSPIRADO PARA EL CONTROL GLUCEMICO BASADO EN SENSORES Y ACCESORIOS INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//Y2018%2FNMT-4668//Micro-Stres-MAP-CM / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3773//GenObIA-CM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cervigón, C.; Velasco, JM.; Burgos-Simon, C.; Villanueva Micó, RJ.; Hidalgo, JI. (2021). Probabilistic Fitting of Glucose Models with Real-Coded Genetic Algorithms. IEEE. 736-743. https://doi.org/10.1109/CEC45853.2021.9504836 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename IEEE Congress on Evolutionary Computation (CEC 2021) es_ES
dc.relation.conferencedate Junio 28-Julio 01,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/CEC45853.2021.9504836 es_ES
dc.description.upvformatpinicio 736 es_ES
dc.description.upvformatpfin 743 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\452190 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundación Eugenio Rodriguez Pascual es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem