Mostrar el registro sencillo del ítem
dc.contributor.author | Boiti, Chiara | es_ES |
dc.contributor.author | Jornet Casanova, David | es_ES |
dc.contributor.author | Oliaro, Alessandro | es_ES |
dc.contributor.author | Schindl, Gerhard | es_ES |
dc.date.accessioned | 2022-03-10T19:04:15Z | |
dc.date.available | 2022-03-10T19:04:15Z | |
dc.date.issued | 2021-05 | es_ES |
dc.identifier.issn | 0010-0757 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181372 | |
dc.description.abstract | [EN] We use techniques from time-frequency analysis to show that the space S(omega )of rapidly decreasing omega-ultradifferentiable functions is nuclear for every weight function omega(t) = o(t) as t tends to infinity. Moreover, we prove that, for a sequence (M-p)(p) satisfying the classical condition (M1) of Komatsu, the space of Beurling type S-(M)p when defined with L-2 norms is nuclear exactly when condition (M2)' of Komatsu holds. | es_ES |
dc.description.sponsorship | We thank the reviewer very much for the careful reading of our manuscript and the comments to improve the paper. The first three authors were partially supported by the Project FFABR 2017 (MIUR), and by the Projects FIR 2018 and FAR 2018 (University of Ferrara). The first and third authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The research of the second author was partially supported by the project MTM2016-76647-P and the grant BEST/2019/172 from Generalitat Valenciana. The fourth author is supported by FWF-project J 3948-N35. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Collectanea mathematica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nuclear spaces | es_ES |
dc.subject | Weighted spaces of ultradifferentiable functions of Beurling type | es_ES |
dc.subject | Gabor frames | es_ES |
dc.subject | Time-frequency analysis | es_ES |
dc.title | Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13348-020-00296-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FFABR 2017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FIR2018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FAR2018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//BEST%2F2019%2F172/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWF//J 3948-N35/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Boiti, C.; Jornet Casanova, D.; Oliaro, A.; Schindl, G. (2021). Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis. Collectanea mathematica. 72(2):423-442. https://doi.org/10.1007/s13348-020-00296-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13348-020-00296-0 | es_ES |
dc.description.upvformatpinicio | 423 | es_ES |
dc.description.upvformatpfin | 442 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 72 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\452777 | es_ES |
dc.contributor.funder | Austrian Science Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Università degli Studi di Ferrara | es_ES |
dc.description.references | Asensio, V., Jornet, D.: Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3477–3512 (2019) | es_ES |
dc.description.references | Aubry, J.-M.: Ultrarapidly decreasing ultradifferentiable functions, Wigner distributions and density matrices. J. London Math. Soc. 2(78), 392–406 (2008) | es_ES |
dc.description.references | Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966) | es_ES |
dc.description.references | Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017) | es_ES |
dc.description.references | Boiti, C., Jornet, D., Oliaro, A.: The Gabor wave front set in spaces of ultradifferentiable functions. Monatsh. Math. 188(2), 199–246 (2019) | es_ES |
dc.description.references | Boiti, C., Jornet, D., Oliaro, A.: About the nuclearity of $$\cal{S}_{(M_{p})}$$ and $$\cal{S}_{\omega }$$. In: Boggiatto, P., et al. (eds.) Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis, pp. 121–129. Birkhäuser, Cham (2020) | es_ES |
dc.description.references | Boiti, C., Jornet, D., Oliaro, A.: Real Paley-Wiener theorems in spaces of ultradifferentiable functions. J. Funct. Anal. 278(4), 108348 (2020) | es_ES |
dc.description.references | Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007) | es_ES |
dc.description.references | Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990) | es_ES |
dc.description.references | Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005) | es_ES |
dc.description.references | Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008) | es_ES |
dc.description.references | Franken, U.: Weight functions for classes of ultradifferentiable functions. Results Math. 25, 50–53 (1994) | es_ES |
dc.description.references | Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001) | es_ES |
dc.description.references | Gröchenig, K., Leinert, M.: Wiener’s Lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17(1), 1–18 (2004) | es_ES |
dc.description.references | Gröchenig, K., Zimmermann, G.: Spaces of Test Functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004) | es_ES |
dc.description.references | Heinrich, T., Meise, R.: A support theorem for quasianalytic functionals. Math. Nachr. 280(4), 364–387 (2007) | es_ES |
dc.description.references | Hörmander, L.: Notions of Convexity. Progress in Mathematics, vol. 127. Birkhäuser, Boston (1994) | es_ES |
dc.description.references | Janssen, A.J.E.M.: Duality and Biorthogonality for Weyl-Heisenberg Frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995) | es_ES |
dc.description.references | Komatsu, H.: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect IA Math. 20, 25–105 (1973) | es_ES |
dc.description.references | Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 119(3), 269–285 (2006) | es_ES |
dc.description.references | Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997) | es_ES |
dc.description.references | Petzsche, H.J.: Die nuklearität der ultradistributionsräume und der satz vom kern I. Manuscripta Math. 24, 133–171 (1978) | es_ES |
dc.description.references | Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972) | es_ES |
dc.description.references | Pilipović, S., Prangoski, B., Vindas, J.: On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution. J. Math. Pures Appl. 116, 174–210 (2018) | es_ES |
dc.description.references | Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific Publishing Co. Inc, River Edge, NJ (1993) | es_ES |
dc.description.references | Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014) | es_ES |
dc.description.references | Schmets, J., Valdivia, M.: Analytic extension of ultradifferentiable Whitney jets. Collect. Math. 50(1), 73–94 (1999) | es_ES |