- -

Tensile behaviour of reinforced UHPFRC elements under serviceability conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tensile behaviour of reinforced UHPFRC elements under serviceability conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Khorami, M. es_ES
dc.contributor.author Navarro-Gregori, Juan es_ES
dc.contributor.author Serna Ros, Pedro es_ES
dc.date.accessioned 2022-03-10T19:04:37Z
dc.date.available 2022-03-10T19:04:37Z
dc.date.issued 2021-02-10 es_ES
dc.identifier.issn 1359-5997 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181378
dc.description.abstract [EN] Tension stiffening is an essential effect that influences the behaviour of concrete structures under serviceability conditions, mainly regarding crack control and deflection behaviour. Serviceability conditions can be studied experimentally by running the so-called uniaxial tensile test. This paper reports an extensive experimental research conducted to study the tensile behaviour of reinforced Ultra-High Performance Fibre-Reinforced Concrete (R-UHPFRC) under service conditions by uniaxial tensile testing. The parameters studied were the reinforcement ratio and the steel fibre content in a experimental programme including 36 specimens. Special testing equipment and methodology to measure the post-cracking deformation of R-UHPFRC ties were developed, and special attention was paid to the shrinkage effect. The tensile elements' axial stiffness was approximately parallel to the bare bar response after microcracking formation showing a full tension-stiffening response. The average tensile capacity of the reinforced elements (tension stiffening response) was achieved. Concrete's contribution in the R-UHPFRC ties with the tensile properties deriving from four-point bending tests (4PBTs) on non-reinforced UHPFRC specimens was also compared. The experimental results revealed a slight increase in concrete's contribution with the higher reinforcement ratio. Moreover, the concrete's contribution in the tensile elements was higher than the characteristic tensile properties deriving from 4PBTs. es_ES
dc.description.sponsorship This study forms part of Project BIA2016-78460-C3-1-R, supported by the Ministry of Economy and Competitiveness of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Springer - RILEM Publishing es_ES
dc.relation.ispartof Materials and Structures es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Reinforcement es_ES
dc.subject Serviceability es_ES
dc.subject Tensile elements es_ES
dc.subject Tension stiffening es_ES
dc.subject UHPFRC es_ES
dc.title Tensile behaviour of reinforced UHPFRC elements under serviceability conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1617/s11527-021-01630-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BIA2016-78460-C3-1-R//BASES PARA EL DISEÑO DE ESTRUCTURAS SOSTENIBLES DE HORMIGON DE MUY ALTO RENDIMIENTO A NIVEL PRENORMATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Khorami, M.; Navarro-Gregori, J.; Serna Ros, P. (2021). Tensile behaviour of reinforced UHPFRC elements under serviceability conditions. Materials and Structures. 54(1):1-17. https://doi.org/10.1617/s11527-021-01630-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1617/s11527-021-01630-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\429680 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Burns C (2012) Serviceability analysis of reinforced concrete based on the tension chord model, PhD thesis no. 19979, Institute of Structural Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland es_ES
dc.description.references Honfi D (2013) Design for Serviceability-A probabilistic approach. Lund University, Sweden es_ES
dc.description.references Sahamitmongkol R, Kishi T (2011) Tension stiffening effect and bonding characteristics of chemically prestressed concrete under tension. Mater Struct 44(2):455–474 es_ES
dc.description.references Gribniak V et al (2015) Stochastic tension-stiffening approach for the solution of serviceability problems in reinforced concrete: Constitutive modeling. Comput-Aided Civil Infrastruct Eng 30(9):684–702 es_ES
dc.description.references Muhamad R et al (2012) The tension stiffening mechanism in reinforced concrete prisms. Adv Struct Eng 15(12):2053–2069 es_ES
dc.description.references Model Code 2010 (2012), Final Complete Draft, Fib Bull: No.65 and 66, March 2012-ISBN 978-2-88394-105-2 and April 2012-ISBN 978-2-88394-106-9 es_ES
dc.description.references AFGC S (2002) Bétons fibrés à ultra-hautes performances–Recommandations provisoires. AFGC, France es_ES
dc.description.references Committee JC (2008) Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks. Japan Society of Civil Engineers, Tokyo, Japan es_ES
dc.description.references Cahier Technique SIA 2052 (2014) Béton fibré ultra-performant (BFUP)-Matériaux, dimensionnement et exécution. Projet es_ES
dc.description.references Belarbi A, Hsu TT (1994) Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Structural Journal 91(4):465–474 es_ES
dc.description.references Yankelevsky DZ, Jabareen M, Abutbul AD (2008) One-dimensional analysis of tension stiffening in reinforced concrete with discrete cracks. Eng Struct 30(1):206–217 es_ES
dc.description.references Stramandinoli RS, La Rovere HL (2008) An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members. Eng Struct 30(7):2069–2080 es_ES
dc.description.references Collins MP, Mitchell D (1991) Prestressed concrete structures, vol 9. Prentice Hall Englewood Cliffs, NJ es_ES
dc.description.references Kaklauskas G (2001) Integral constitutive model for deformational analysis of flexural reinforced concrete members. Statyba 7(1):3–9 es_ES
dc.description.references Hsu TT (2017) Unified theory of reinforced concrete. Routledge, UK es_ES
dc.description.references Fields K, Bischoff PH (2004) Tension stiffening and cracking of high-strength reinforced concrete tension members. Structural Journal 101(4):447–456 es_ES
dc.description.references Patel K, Chaudhary S, Nagpal A (2016) A tension stiffening model for analysis of RC flexural members under service load. Comput Concrete 17(1):29–51 es_ES
dc.description.references Lee SC, Cho JY and Vecchio FJ (2013) Tension-Stiffening Model for Steel Fiber-Reinforced Concrete Containing Conventional Reinforcement. ACI Structural Journal 110(4) es_ES
dc.description.references Bischoff PH (2003) Tension stiffening and cracking of steel fiber-reinforced concrete. J Mater Civ Eng 15(2):174–182 es_ES
dc.description.references Amin A, Foster SJ, Watts M (2016) Modelling the tension stiffening effect in SFR-RC. Mag Concrete Res 68(7):339–352 es_ES
dc.description.references Deluce JR, Vecchio FJ (2013) Cracking Behavior of Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement. ACI Struct J 110(3):481–490 es_ES
dc.description.references Bernardi P et al (2016) Experimental and numerical study on cracking process in RC and R/FRC ties. Mater Struct 49(1–2):261–277 es_ES
dc.description.references Baby F et al (2013) UHPFRC tensile behavior characterization: inverse analysis of four-point bending test results. Mater Struct 46(8):1337–1354 es_ES
dc.description.references Lee S-C, Kim H-B, Joh C (2017) Inverse Analysis of UHPFRC Beams with a Notch to Evaluate Tensile Behavior. Advances in Materials Science and Engineering 2017:1–10 es_ES
dc.description.references Baby F et al (2013) Identification of UHPFRC tensile behaviour: methodology based on bending tests. UHPFRC 2013-International Symposium on Ultra-High Performance Fibre-Reinforced Concrete: 649–658 es_ES
dc.description.references Baby F et al (2012) Proposed flexural test method and associated inverse analysis for ultra-high-performance fiber-reinforced concrete. ACI Mater J 109(5):545 es_ES
dc.description.references López JÁ et al (2015) An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Mater Struct 48(11):3703–3718 es_ES
dc.description.references López JÁ (2017) Characterisation of The Tensile Behaviour of UHPFRC by Means of Four-Point Bending Tests. PhD Thesis, Universitat Politècnica de València es_ES
dc.description.references Khorami M, Navarro-Gregori J, Serna P (2020) Experimental methodology on the serviceability behaviour of reinforced ultra-high performance fibre reinforced concrete tensile elements. Strain 56(5):e12361 es_ES
dc.description.references Khorami M et al (2019) A testing method for studying the serviceability behavior of reinforced UHPFRC tensile ties. in IOP Conference Series: Materials Science and Engineering. IOP Conference Series 596:12–22 es_ES
dc.description.references Lee N, Chisholm D (2005) Reactive Powder Concrete, Study Report SR 146. Ltd, Judgeford, New Zealand es_ES
dc.description.references Beigi MH et al (2013) An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater Des 50:1019–1029 es_ES
dc.description.references Li VC (2002) Large volume, high-performance applications of fibers in civil engineering. J Appl Polym Sci 83(3):660–686 es_ES
dc.description.references Edgington J (1973) Steel fibre reinforced concrete. University of Surrey, Guildford es_ES
dc.description.references López J et al (2015) Comparison between inverse analysis procedure results and experimental measurements obtained from UHPFRC Four-Point Bending Tests. in Seventh International RILEM Conference on High Performance Fiber Reinforced Cement Composites (HPFRCC7): 185–192 es_ES
dc.description.references Löfgren I (2005) Fibre-reinforced Concrete for Industrial Construction-a fracture mechanics approach to material testing and structural analysis. Chalmers University of Technology, Gothenburg es_ES
dc.description.references Afroughsabet V, Biolzi L, Ozbakkaloglu T (2016) High-performance fiber-reinforced concrete: a review. J Mater Sci 51(14):6517–6551 es_ES
dc.description.references Buttignol TET, Sousa J, Bittencourt T (2017) Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC): a review of material properties and design procedures. Revista IBRACON de estruturas e materiais 10(4):957–971 es_ES
dc.description.references Fehling E et al (2014) Ultra-high performance concrete UHPC: Fundamentals, design, examples. Wiley, NY es_ES
dc.description.references Makita T, Brühwiler E (2014) Tensile fatigue behaviour of Ultra-High Performance Fibre Reinforced Concrete combined with steel rebars (R-UHPFRC). Int J Fatigue 59:145–152 es_ES
dc.description.references Rauch M and Sigrist V (2010) Dimensioning of Structures made of UHPFRC. in IABSE Symposium Report. 34th International Association for Bridge and Structural Engineering 97(34):39–46 es_ES
dc.description.references Sigrist V and Rauch M (2008) Deformation behavior of reinforced UHPFRC elements in tension. Anonymous Tailor Made Concrete Structures. CRC Press: 405–410 es_ES
dc.description.references Redaelli D (2006) Testing of reinforced high performance fibre concrete members in tension. in Proceedings of the 6th Int. Ph. D. Symposium in Civil Engineering, Zurich 2006. 2006. Proceedings of the 6th Int. Ph. D. Symposium in Civil Engineering, Zurich es_ES
dc.description.references Institution BS (2004) Eurocode 2: Design of concrete structures: Part 1–1: General rules and rules for buildings. British Standards Institution, UK es_ES
dc.description.references Gribniak V, Kaklauskas G and Bačinskas D (2007) State-of-art review of shrinkage effect on cracking and deformations of concrete bridge elements. The Baltic Journal of Road & Bridge Engineering 2(4):183-193 es_ES
dc.description.references Torst H (1967) Auswirkungen des superpositionsprinzips auf kriech-und relaxationsprobleme bei beton und spannbeton. Beton-und stahlbetonbau 10(230–238):261–269 es_ES
dc.description.references Bazant Z (1972) Predictions of concrete effects using age adjusted effective modulus method. J Am Concrete Institute 69:212–217 es_ES
dc.description.references AFGC (2013)  Ultra high performance fibre-reinforced concretes, recommendations. Documents scientifiques et techniques, Paris es_ES
dc.description.references Gowripalan N, Gilbert R (2000) Design guidelines for RPC prestressed concrete beams. School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia es_ES
dc.description.references Ostergaard L, Walter R and Olesen J (2005) Method for determination of tensile properties of engineered cementitious composites (ECC). Proceedings of ConMat'05, Vancouver, Canada es_ES
dc.description.references Kanakubo T (2006) Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites. J Adv Concrete Technol 4(1):3–17 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem