- -

General intelligence disentangled via a generality metric for natural and artificial intelligence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

General intelligence disentangled via a generality metric for natural and artificial intelligence

Mostrar el registro completo del ítem

Hernández-Orallo, J.; Loe, BS.; Cheke, L.; Martínez-Plumed, F.; Heigeartaigh, SO. (2021). General intelligence disentangled via a generality metric for natural and artificial intelligence. Scientific Reports. 11(1):1-16. https://doi.org/10.1038/s41598-021-01997-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181550

Ficheros en el ítem

Metadatos del ítem

Título: General intelligence disentangled via a generality metric for natural and artificial intelligence
Autor: Hernández-Orallo, José Loe, Bao Sheng Cheke, Lucy Martínez-Plumed, Fernando Heigeartaigh, Sean O.
Fecha difusión:
Resumen:
[EN] Success in all sorts of situations is the most classical interpretation of general intelligence. Under limited resources, however, the capability of an agent must necessarily be limited too, and generality needs to ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-021-01997-7
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-021-01997-7
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C32/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/
info:eu-repo/grantAgreement/DOD//HR00112120007/
info:eu-repo/grantAgreement/EC/H2020/952215/EU/
info:eu-repo/grantAgreement/FLI//RFP2-152/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098//DEEPTRUST/
Agradecimientos:
We are grateful to Jim DiCarlo and his lab (http://dicarlolab.mit.edu/, MIT), Judith Burkart, Laura Damerius and Carel van Schaik (Universitat Zurich), and Katherine Bruce and Mark Galizio (UNC Wilmington), for their data ...[+]
Tipo: Artículo

References

Pintner, R. Intelligence and its measurement: A symposium-v. J. Educ. Psychol. 12, 139 (1921).

Fogel, D. B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (IEEE Press, 1995).

Legg, S. & Hutter, M. Universal intelligence: A definition of machine intelligence. Minds Mach. 17, 391–444 (2007). [+]
Pintner, R. Intelligence and its measurement: A symposium-v. J. Educ. Psychol. 12, 139 (1921).

Fogel, D. B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (IEEE Press, 1995).

Legg, S. & Hutter, M. Universal intelligence: A definition of machine intelligence. Minds Mach. 17, 391–444 (2007).

Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

Yang, J. et al. General learning ability in perceptual learning. Proc. Natl. Acad. Sci. 117, 19092–19100 (2020).

Spearman, C. The Abilities of Man: Their Nature and Measurement (Macmillan, 1927).

Detterman, D. K. General intelligence: Cognitive and biological explanations. In The General Factor of Intelligence: How General is it? (eds Sternberg, R. J. & Grigorenko, E. L.) 223–243 (Lawrence Erlbaum Associates, 2002).

Burkart, J. M., Schubiger, M. N. & van Schaik, C. P. The evolution of general intelligence. Behav. Brain Sci. 40, e195 (2017).

Poirier, M.-A., Kozlovsky, D. Y., Morand-Ferron, J. & Careau, V. How general is cognitive ability in non-human animals? A meta-analytical and multi-level reanalysis approach. Proc. R. Soc. B 287, 20201853 (2020).

Newell, A., Shaw, J. C. & Simon, H. A. Report on a general problem-solving program. In IFIP Congress, 256–264 (1959).

McCarthy, J. Generality in artificial intelligence. Commun. ACM 30, 1030–1035 (1987).

Johnson, W. Correlation and explaining variance: To square or not to square?. Intelligence 39, 249–254 (2011).

Detterman, D. K. & Daniel, M. H. Correlations of mental tests with each other and with cognitive variables are highest for low IQ groups. Intelligence 13, 349–359 (1989).

Hernández-Orallo, J. The Measure of All Minds: Evaluating Natural and Artificial Intelligence (Cambridge University Press, 2017).

Hernández-Orallo, J. et al. A new AI evaluation cosmos: Ready to play the game? AI Magazine 38 (2017).

Hernández-Orallo, J. Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement. Artif. Intell. Rev. 48, 397–447 (2017).

Lapuschkin, S. et al. Unmasking clever Hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019).

Hernández-Orallo, J. Gazing into Clever Hans machines. Nat. Mach. Intell. 1 (2019).

Cave, S. & ÓhÉigeartaigh, S. S. Bridging near-and long-term concerns about AI. Nat. Mach. Intell. 1, 5–6 (2019).

Hernández-Orallo, J. Unbridled mental power. Nat. Phys. 15, 106 (2019).

Sternberg, R. J. The holey grail of general intelligence. Science 289, 399–401 (2000).

Carroll, J. B. The Three-Stratum Theory of Cognitive Abilities (The Guilford Press, 1997).

Sternberg, R. A triarchic view of giftedness: Theory and practice. Handbook of Gifted Education 2, 43–53 (1997).

Rust, J., Kosinski, M. & Stillwell, D. Modern Psychometrics: The Science of Psychological Assessment 4th edn. (Routledge, 2020).

Shaw, R. C. & Schmelz, M. Cognitive test batteries in animal cognition research: Evaluating the past, present and future of comparative psychometrics. Anim. Cogn. 20, 1003–1018 (2017).

Ramón, S. et al. Textura del sistema nervioso del hombre y de los vertebrados: estudios sobre el plan estructural y composición histológica de los centros nerviosos adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos, vol. 1 (Moya, 1899).

Del Giudice, M. & Crespi, B. J. Basic functional trade-offs in cognition: An integrative framework. Cognition 179, 56–70 (2018).

Nielsen, T. S., Barros, G. A., Togelius, J. & Nelson, M. J. Towards generating arcade game rules with VGDL. In 2015 IEEE Conference on Computational Intelligence and Games (CIG), 185–192 (IEEE, 2015).

Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V. & Hernández-Orallo, J. Comparing humans and AI agents. In International Conference on Artificial General Intelligence, 122–132 (Springer, 2011).

Elithorn, A. A preliminary report on a perceptual maze test sensitive to brain damage. J. Neurol. Neurosurg. Psychiatry 18, 287 (1955).

Loe, B. S. & Rust, J. The perceptual maze test revisited: Evaluating the difficulty of automatically generated mazes. Assessment 26, 1524–1539 (2019).

Davies, A. D. & Davies, M. The difficulty and graded scoring of Elithorn’s perceptual maze test. Br. J. Psychol. 56, 295–302 (1965).

Thurstone, L. L. Primary mental abilities. Psychometric Monographs (1938).

Simon, H. A. & Kotovsky, K. Human acquisition of concepts for sequential patterns. Psychol. Rev. 70, 534 (1963).

Hernández-Orallo, J., Martínez-Plumed, F., Schmid, U., Siebers, M. & Dowe, D. L. Computer models solving intelligence test problems: Progress and implications. Artif. Intell. 230, 74–107 (2016).

Hernández-Orallo, J. Beyond the turing test. J. Logic Lang. Inf. 9, 447–466 (2000).

Katayama, S. An analytical inductive functional programming system that avoids unintended programs. In Proceedings of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation, 43–52 (ACM, 2012).

Rajalingham, R. et al. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. J. Neurosci. 38, 7255–7269 (2018).

Young, J. W. et al. The odour span task: A novel paradigm for assessing working memory in mice. Neuropharmacology 52, 634–645 (2007).

April, L. B., Bruce, K. & Galizio, M. The magic number 70 (plus or minus 20): Variables determining performance in the rodent odor span task. Learn. Motiv. 44, 143–158 (2013).

Smith, M. R., Martinez, T. & Giraud-Carrier, C. An instance level analysis of data complexity. Mach. Learn. 95, 225–256 (2014).

Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A. & Hernández-Orallo, J. Item response theory in AI: Analysing machine learning classifiers at the instance level. Artif. Intell. 271, 18–42 (2019).

Morizot, J., Ainsworth, A. T. & Reise, S. P. Toward modern psychometrics. Handbook of Research Methods in Personality Psychology 407 (2009).

Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317, 1360–1366 (2007).

Koorehdavoudi, H. & Bogdan, P. A statistical physics characterization of the complex systems dynamics: Quantifying complexity from spatio-temporal interactions. Sci. Rep. 6, 1–13 (2016).

Balaban, V., Lim, S., Gupta, G., Boedicker, J. & Bogdan, P. Quantifying emergence and self-organisation of Enterobacter cloacae microbial communities. Sci. Rep. 8, 1–9 (2018).

Hazy, J. K. When the value of cooperating scales: Collective intelligence, information processing, and the leadership meta-capability. Front. Hum. Dyn. 3, 1 (2021).

Seed, A., Emery, N. & Clayton, N. Intelligence in corvids and apes: A case of convergent evolution?. Ethology 115, 401–420 (2009).

Jacobs, I. & Gärdenfors, P. The false dichotomy of domain-specific versus domain-general cognition. Behav. Brain Sci. 40, e207 (2017).

Brynjolfsson, E. & Mitchell, T. What can machine learning do? Workforce implications. Science 358, 1530–1534 (2017).

Brown, N. & Sandholm, T. Superhuman AI for multiplayer poker. Science 365, 885–890 (2019).

Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019).

Fleuret, F. et al. Comparing machines and humans on a visual categorization test. Proc. Natl. Acad. Sci. 108, 17621–17625 (2011).

Ullman, S., Assif, L., Fetaya, E. & Harari, D. Atoms of recognition in human and computer vision. Proc. Natl. Acad. Sci. 113, 2744–2749 (2016).

Firestone, C. Performance vs competence in human–machine comparisons. Proc. Natl. Acad. Sci. 117, 26562–26571 (2020).

Crosby, M. et al. The animal-AI testbed and competition. Proceedings of Machine Learning Research 164–176 (2020).

Shanahan, M., Crosby, M., Beyret, B. & Cheke, L. Artificial intelligence and the common sense of animals. Trends Cogn. Sci. 24, 862–872 (2020).

Tenenbaum, J. B. & Griffiths, T. L. Generalization, similarity, and Bayesian inference. Behav. Brain Sci. 24, 629 (2001).

Balla, M., Lucas, S. M. & Perez-Liebana, D. Evaluating generalisation in general video game playing. In 2020 IEEE Conference on Games (CoG), 423–430 (2020).

Risi, S. & Togelius, J. Increasing generality in machine learning through procedural content generation. Nat. Mach. Intell. 2, 428–436 (2020).

Schrittwieser, J. et al. Mastering Atari, go, chess and shogi by planning with a learned model. Nature 588, 604–609 (2020).

Brown, T. B. et al. Language models are few-shot learners. Advances in Neural Information Processing Systems 33 (NeurIPS 2020), arXiv preprintarXiv:2005.14165 (2020).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem