- -

Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Paredes Palacios, Roberto es_ES
dc.contributor.advisor Ramos Castro, Daniel es_ES
dc.contributor.author Maroñas Molano, Juan es_ES
dc.date.accessioned 2022-03-28T08:55:26Z
dc.date.available 2022-03-28T08:55:26Z
dc.date.created 2022-01-26
dc.date.issued 2022-02-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181582
dc.description.abstract [ES] Esta tesis se enmarca en la intersección entre las técnicas modernas de Machine Learning, como las Redes Neuronales Profundas, y el modelado probabilístico confiable. En muchas aplicaciones, no solo nos importa la predicción hecha por un modelo (por ejemplo esta imagen de pulmón presenta cáncer) sino también la confianza que tiene el modelo para hacer esta predicción (por ejemplo esta imagen de pulmón presenta cáncer con 67% probabilidad). En tales aplicaciones, el modelo ayuda al tomador de decisiones (en este caso un médico) a tomar la decisión final. Como consecuencia, es necesario que las probabilidades proporcionadas por un modelo reflejen las proporciones reales presentes en el conjunto al que se ha asignado dichas probabilidades; de lo contrario, el modelo es inútil en la práctica. Cuando esto sucede, decimos que un modelo está perfectamente calibrado. En esta tesis se exploran tres vias para proveer modelos más calibrados. Primero se muestra como calibrar modelos de manera implicita, que son descalibrados por técnicas de aumentación de datos. Se introduce una función de coste que resuelve esta descalibración tomando como partida las ideas derivadas de la toma de decisiones con la regla de Bayes. Segundo, se muestra como calibrar modelos utilizando una etapa de post calibración implementada con una red neuronal Bayesiana. Finalmente, y en base a las limitaciones estudiadas en la red neuronal Bayesiana, que hipotetizamos que se basan en un prior mispecificado, se introduce un nuevo proceso estocástico que sirve como distribución a priori en un problema de inferencia Bayesiana. es_ES
dc.description.abstract [CA] Aquesta tesi s'emmarca en la intersecció entre les tècniques modernes de Machine Learning, com ara les Xarxes Neuronals Profundes, i el modelatge probabilístic fiable. En moltes aplicacions, no només ens importa la predicció feta per un model (per ejemplem aquesta imatge de pulmó presenta càncer) sinó també la confiança que té el model per fer aquesta predicció (per exemple aquesta imatge de pulmó presenta càncer amb 67% probabilitat). En aquestes aplicacions, el model ajuda el prenedor de decisions (en aquest cas un metge) a prendre la decisió final. Com a conseqüència, cal que les probabilitats proporcionades per un model reflecteixin les proporcions reals presents en el conjunt a què s'han assignat aquestes probabilitats; altrament, el model és inútil a la pràctica. Quan això passa, diem que un model està perfectament calibrat. En aquesta tesi s'exploren tres vies per proveir models més calibrats. Primer es mostra com calibrar models de manera implícita, que són descalibrats per tècniques d'augmentació de dades. S'introdueix una funció de cost que resol aquesta descalibració prenent com a partida les idees derivades de la presa de decisions amb la regla de Bayes. Segon, es mostra com calibrar models utilitzant una etapa de post calibratge implementada amb una xarxa neuronal Bayesiana. Finalment, i segons les limitacions estudiades a la xarxa neuronal Bayesiana, que es basen en un prior mispecificat, s'introdueix un nou procés estocàstic que serveix com a distribució a priori en un problema d'inferència Bayesiana. es_ES
dc.description.abstract [EN] This thesis is framed at the intersection between modern Machine Learning techniques, such as Deep Neural Networks, and reliable probabilistic modeling. In many machine learning applications, we do not only care about the prediction made by a model (e.g. this lung image presents cancer) but also in how confident is the model in making this prediction (e.g. this lung image presents cancer with 67% probability). In such applications, the model assists the decision-maker (in this case a doctor) towards making the final decision. As a consequence, one needs that the probabilities provided by a model reflects the true underlying set of outcomes, otherwise the model is useless in practice. When this happens, we say that a model is perfectly calibrated. In this thesis three ways are explored to provide more calibrated models. First, it is shown how to calibrate models implicitly, which are decalibrated by data augmentation techniques. A cost function is introduced that solves this decalibration taking as a starting point the ideas derived from decision making with Bayes' rule. Second, it shows how to calibrate models using a post-calibration stage implemented with a Bayesian neural network. Finally, and based on the limitations studied in the Bayesian neural network, which we hypothesize that came from a mispecified prior, a new stochastic process is introduced that serves as a priori distribution in a Bayesian inference problem. es_ES
dc.format.extent 148 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Calibración es_ES
dc.subject Procesos Gaussianos es_ES
dc.subject Aprendizaje profundo es_ES
dc.subject Redes neuronales bayesianas es_ES
dc.subject Redes neuronales profundas es_ES
dc.subject Machine learning es_ES
dc.subject Bayesian learning es_ES
dc.subject Deep learning es_ES
dc.subject Gaussian processes es_ES
dc.subject Bayesian neural networks es_ES
dc.subject Calibration es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/181582 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Maroñas Molano, J. (2022). Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181582 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\12586 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem