- -

The principal eigenvalue of some nth order linear boundary value problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The principal eigenvalue of some nth order linear boundary value problems

Mostrar el registro completo del ítem

Almenar, P.; Jódar Sánchez, LA. (2021). The principal eigenvalue of some nth order linear boundary value problems. Boundary Value Problems. 2021:1-16. https://doi.org/10.1186/s13661-021-01561-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181755

Ficheros en el ítem

Metadatos del ítem

Título: The principal eigenvalue of some nth order linear boundary value problems
Autor: Almenar, Pedro Jódar Sánchez, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The purpose of this paper is to present a procedure for the estimation of the smallest eigenvalues and their associated eigenfunctions of nth order linear boundary value problems with homogeneous boundary conditions ...[+]
Palabras clave: Eigenvalue , Boundary value problem , Quasi-derivatives , Green function , Cone theory , Collatz-Wielandt numbers
Derechos de uso: Reconocimiento (by)
Fuente:
Boundary Value Problems. (issn: 1687-2762 )
DOI: 10.1186/s13661-021-01561-2
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s13661-021-01561-2
Tipo: Artículo

References

Pólya, G.: On the mean value theorem corresponding to a given linear homogeneous differential operator. Trans. Am. Math. Soc. 24, 312–324 (1924)

Elias, U.: Oscillation Theory of Two-Term Differential Equations. Kluwer Academic, Dordrecht (1997)

Ahmad, S., Lazer, A.C.: On nth order Sturmian theory. J. Differ. Equ. 35, 87–112 (1980) [+]
Pólya, G.: On the mean value theorem corresponding to a given linear homogeneous differential operator. Trans. Am. Math. Soc. 24, 312–324 (1924)

Elias, U.: Oscillation Theory of Two-Term Differential Equations. Kluwer Academic, Dordrecht (1997)

Ahmad, S., Lazer, A.C.: On nth order Sturmian theory. J. Differ. Equ. 35, 87–112 (1980)

Butler, G.J., Erbe, L.H.: Integral comparison theorems and extremal points for linear differential equations. J. Differ. Equ. 47, 214–226 (1983)

Elias, U.: Eigenvalue problems for the equation $ly + \lambda p(x) y =0$. J. Differ. Equ. 29, 28–57 (1978)

Gaudenzi, M.: On an eigenvalue problem of Ahmad and Lazer for ordinary differential equations. Proc. Am. Math. Soc. 99(2), 237–243 (1987)

Joseph, D.D.: Stability of Fluid Motions I. Springer, Berlin (1976)

Erbe, L.H.: Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems. Math. Comput. Model. 32(5–6), 529–539 (2000)

Webb, J.R.L., Lan, K.Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–116 (2006)

Lan, K.Q.: Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems. Nonlinear Anal. 71(12), 5979–5993 (2009)

Webb, J.R.L.: A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 39, 221–242 (2012)

Ciancaruso, F.: Existence of solutions of semilinear systems with gradient dependence via eigenvalue criteria. J. Math. Anal. Appl. 482(1), 123547 (2020). https://doi.org/10.1016/j.jmaa.2019.123547

Forster, K.H., Nagy, B.: On the Collatz–Wielandt numbers and the local spectral radius of a nonnegative operator. Linear Algebra Appl. 120, 193–205 (1989)

Collatz, L.: Einschliessungssatze fur charakteristische zhalen von matrizen. Math. Z. 48, 221–226 (1942)

Wielandt, H.: Unzerlegbare, nicht negative matrizen. Math. Z. 52, 642–648 (1950)

Marek, I., Varga, R.S.: Nested bounds for the spectral radius. Numer. Math. 14, 49–70 (1969)

Marek, I.: Frobenius theory of positive operators: comparison theorems and applications. SIAM J. Appl. Math. 19, 607–628 (1970)

Marek, I.: Collatz–Wielandt numbers in general partially ordered spaces. Linear Algebra Appl. 173, 165–180 (1992)

Akian, M., Gaubert, S., Nussbaum, R.: A Collatz–Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, 1–24 (2014). arXiv:1112.5968v1 [math.FA]

Chang, K.C.: Nonlinear extensions of the Perron–Frobenius theorem and the Krein–Rutman theorem. J. Fixed Point Theory Appl. 15, 433–457 (2014)

Thieme, H.R.: Spectral radii and Collatz–Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm. In: de Jeu, M., de Pagter, O.V.G.B., Veraar, M. (eds.) Ordered Structures and Applications. Trends in Mathematics, pp. 415–467 (2016)

Chang, K.C., Wang, X., Wu, X.: On the spectral theory of positive operators and PDE applications. Discrete Contin. Dyn. Syst. 40(6), 3171–3200 (2020). https://doi.org/10.3934/dcds.2020054

Webb, J.R.L.: Estimates of eigenvalues of linear operators associated with nonlinear boundary value problems. Dyn. Syst. Appl. 23, 415–430 (2014)

Almenar, P., Jódar, L.: Estimation of the smallest eigenvalue of an nth order linear boundary value problem. Math. Methods Appl. Sci. 44, 4491–4514 (2021). https://doi.org/10.1002/mma.7047

Diaz, G.: Applications of cone theory to boundary value problems. PhD thesis, University of Nebraska-Lincoln (1989)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem