- -

New fourth and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New fourth and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kansal, Munish es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Bhalla, Sonia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2022-04-05T06:28:48Z
dc.date.available 2022-04-05T06:28:48Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1017-1398 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181767
dc.description.abstract [EN] In this paper, a two-step class of fourth-order iterative methods for solving systems of nonlinear equations is presented. We further extend the two-step class to establish a new sixth-order family which requires only one additional functional evaluation. The convergence analysis of the proposed classes is provided under several mild conditions. A complete dynamical analysis is made, by using real multidimensional discrete dynamics, in order to select the most stable elements of both families of fourth- and sixth-order of convergence. To get this aim, a novel tool based on the existence of critical points has been used, the parameter line. The analytical discussion of the work is upheld by performing numerical experiments on some application-oriented problems. We provide an implementation of the proposed scheme on nonlinear optimization problem and zero-residual nonlinear least-squares problems taken from the constrained and unconstrained testing environment test set. Finally, based on numerical results, it has been concluded that our methods are comparable with the existing ones of similar nature in terms of order, efficiency, and computational time and also that the stability results provide the most efficient member of each class of iterative schemes. es_ES
dc.description.sponsorship This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Systems of nonlinear equations es_ES
dc.subject Order of convergence es_ES
dc.subject Multipoint iterative methods es_ES
dc.subject Stability analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title New fourth and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-020-00997-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2016%2F089//RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES MEDIANTE TECNICAS ITERATIVAS: ANALISIS DINAMICO Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Kansal, M.; Cordero Barbero, A.; Bhalla, S.; Torregrosa Sánchez, JR. (2021). New fourth and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis. Numerical Algorithms. 87(3):1017-1060. https://doi.org/10.1007/s11075-020-00997-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11075-020-00997-4 es_ES
dc.description.upvformatpinicio 1017 es_ES
dc.description.upvformatpfin 1060 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 87 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\423918 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Cordero, A., Torregrosa, J. R.: Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 183, 199–208 (2006) es_ES
dc.description.references Frontini, M., Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004) es_ES
dc.description.references Grau-Sánchez, M., Grau, À., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of non-linear equations. Comput. Appl. Math. 236, 1259–1266 (2011) es_ES
dc.description.references Homeier, H. H. H.: A modified Newton method with cubic convergence:the multivariable case. Comput Appl. Math. 169, 161–169 (2004) es_ES
dc.description.references Cordero, A., Torregrosa, J. R.: Variants of Newton’s method using fifth-order quadrature formulas. Comput. Appl. Math. 190, 686–698 (2007) es_ES
dc.description.references Darvishi, M. T., Barati, A.: Super cubic iterative methods to solve systems of nonlinear equations. Appl. Math. Comput. 188, 1678–1685 (2007) es_ES
dc.description.references Darvishi, M. T., Barati, A.: A third-order Newton-type method to solve systems of non-linear equations. Appl.Math. Comput. 187, 630–635 (2007) es_ES
dc.description.references Potra, F. A., Pták, V.: Nondiscrete Induction and Iterarive Processes Pitman Publishing Boston (1984) es_ES
dc.description.references Babajee, D. K. R., Madhu, K., Jayaraman, J.: On some improved harmonic mean Newton-like methods for solving systems of nonlinear equations. Algor. 8, 895–909 (2015) es_ES
dc.description.references Cordero, A., Torregrosa, J.R.: Iterative methods of order four and five for systems of nonlinear equations. Comput. Appl. Math. 231, 541–551 (2009) es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., Torregrosa, J.R.: Efficient high-order methods based on golden ratio for nonlinear systems. Appl. Math. Comput. 217, 4548–4556 (2011) es_ES
dc.description.references Arroyo, V., Cordero, A., Torregrosa, J. R.: Approximation of artificial satellites’ preliminary orbits: the efficiency challenge. Math. Comput. Modelling 54, 1802–1807 (2011) es_ES
dc.description.references Cordero, A., Torregrosa, J. R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references Narang, M., Bhatia, S., Kanwar, V.: New two-parameter Chebyshev Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Appl. Math. Comput. 275, 394–403 (2016) es_ES
dc.description.references Lotfi, T., Bakhtiari, P., Cordero, A., Mahdiani, K., Torregrosa, J. R.: Some new efficient multipoint iterative methods for solving nonlinear systems of equations. Int. J. Comput. Math. 92, 1921–1934 (2015) es_ES
dc.description.references Alzahrani, A. K. H., Behl, R., Alshomrani, A.: Some higher-order iteration functions for solving nonlinear models. Appl. Math. Comput. 334, 80–93 (2018) es_ES
dc.description.references Babajee, D. K. R.: On a two-parameter Chebyshev-Halley like family of optimal two-point fourth order methods free from second derivatives. Afrika Matematika. 26, 689–695 (2015) es_ES
dc.description.references Behl, R., Kanwar, V.: Highly efficient classes of Chebyshev-Halley type methods free from second-order derivative (2014) es_ES
dc.description.references Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables Academic Press New York (1970) es_ES
dc.description.references Cordero, A., Hueso, J. L., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010) es_ES
dc.description.references Fatou, P.: Sur les équations fonctionelles. Bull. Soc. Mat. Fr. 47 (1919) 161–271 48, 33–94 (1920) es_ES
dc.description.references Julia, G.: Mémoire sur l’iteration des fonctions rationnelles. J. Mat. Pur. Appl. 8, 47–245 (1918) es_ES
dc.description.references Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods, The Scientific World Journal, Volume 2013, Article ID 780153, 11 pages es_ES
dc.description.references Cordero, A., García, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Letters 26, 842–848 (2013) es_ES
dc.description.references Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Letters 25, 2209–2217 (2012) es_ES
dc.description.references Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014) es_ES
dc.description.references Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366, 24–32 (2010) es_ES
dc.description.references Cordero, A., Torregrosa, J. R., Vindel, P.: Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013) es_ES
dc.description.references Geum, Y. H., Kim, Y. I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016) es_ES
dc.description.references Cordero, A., Giménez-Palacios, I., Torregrosa, J. R.: Avoiding strange attractors in efficient parametric families of iterative methods for solving nonlinear problems. Appl. Num. Math. 137, 1–18 (2019) es_ES
dc.description.references Cordero, A., Soleymani, F., Torregrosa, J. R.: Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?. Appl. Math. Comput. 244, 398–412 (2014) es_ES
dc.description.references Chicharro, F.I., Cordero, A., Torregrosa, J.T.: Real stability of an efficient family of iterative methods for solving nonlinear systems. In: Proceedings of XXV Congreso de ecuaciones diferenciales y aplicaciones CEDYA 2017, ISBN 978-84-944402-1-2, 206–212 Chicharro, F.I., Cordero, A., Torregrosa, J.T.: Real stability of an efficient family of iterative methods for solving nonlinear systems. Proceedings of XXV Congreso de ecuaciones diferenciales y aplicaciones CEDYA 2017, ISBN 978-84-944402-1-2, 206–212 (2017) es_ES
dc.description.references Robinson, R. C.: An introduction to dynamical systems, continous and discrete, americal mathematical society, providence, RI USA (2012) es_ES
dc.description.references Devaney, R. L.: An Introduction to Chaotic Dynamical Systems Advances in Mathematics and Engineering CRC Press (2003) es_ES
dc.description.references Sharma, J. R., Arora, H.: Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014) es_ES
dc.description.references Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966) es_ES
dc.description.references Hillstrom, K.E.: A stmulatlon test approach to the evaluation of nonlinear optimization algorithms. ACM Trans. Math Softw. 3(4), 305–315 (1977) es_ES
dc.description.references Box, M.J.: A comparison of several current optimization methods, and the use of transformations in constrained problems. Comput. J 9, 67–77 (1966) es_ES
dc.description.references Recktenwald, G.: Least squares fitting of data to a curve, department of mechanical engineering portland state university (2001) es_ES
dc.description.references Argyros, I.K., Hilout, S.: Computational Methods In Nonlinear Analysis: Efficient Algorithms, Fixed Point Theory And Applications, World Scientific Publications (2013) es_ES
dc.description.references Kamenetskii, F., Al’bertovich, D.: Diffusion and heat transfer in chemical kinetics Plenum Press (1969) es_ES
dc.description.references Alaidarous, E. S., Ullah, M. Z., Ahmad, F., Al-Fhaid, A. S.: An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs J Appl Math Hindawi pulisher (2013) es_ES
dc.description.references Dolan, E. D., Moŕe, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem